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Introduction

In causal inference, discovering treatment effect modifiers (TEMs) is
crucial for understanding heterogeneous treatment effects in a population.

Prognostic

Modifiable

prognostic
factors

Prognostic w
tools. M

Personalized @

. care. Enhanced health

Treatment-
effectmodifier

Figure reference: Tousignant-Laflamme et al. (2022)

e Precision medicine: Identifying patient subgroups exhibiting different
benefits from a therapy

e Economics: Assessing government policies on diverse population strata
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Introduction

Prior approaches to TEM discovery.

e Parametric modeling: Add treatment-covariate interaction terms in
a linear outcome model, and assess the statistical significance of
interaction coefficients.

e CATE estimation: Assess variable imporatance in CATE prediction.

e Permutation-based / Dropout-based approaches
e Penalized regression methods with feature selection properties
(e.g. LASSO)

However, the above methods rely on unverifiable assumptions (model
misspecification, sparsity, correlation structures) or produce unreliable
results in high-dimensional settings.
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Introduction

In this paper, we explore a general framework for defining and performing
inference about marginal TEM variable importance parameters
(TEM-VIPs).

e This work generalizes the method of Boileau et al. (2022) to
continuous and binary outcomes, which directly estimates the
strength of covariates’ capacity to modify the treatment effect.

e The proposed framework does not rely on stringent assumptions on
the DGP and accommodates high-dimensional settings.

e The framework is equipped with tools to define appropriate
TEM-VIPs and corresponding EIF-based nonparametric estimators
that allow valid and reliable inference.
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Background on nonparametric asymptotic theory

Notation.

e Full data: {X;}7_,, X; = (W, A;, YO, YW) 1S py o e My
e W;: Set of p covariates, possibly p > n

A;: Binary treatment indicator

° Y,.(a): Potential outcomes; assume Y,-(a) €(0,1)

e Mx: Nonparametric model of possible DGPs

e Observed data: O = (W, A, Y)~ Py e M
e Consistency: Y = AY(®) 4 (1 — A)Y(©
e Under consistency, M is fully determined by M x
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Background on nonparametric asymptotic theory

Recall that P(Y,A, W) = P(Y | A, W)P(A| W) P(W). Thus, we
define the following nuisance functions:

e Py: DGP of observed data

e P,: Empirical distribution

° Isn: Plug-in estimator of P,, made up of elements of P, and possibly
nuisance parameter estimators

e Expected conditional outcome: Qo(A, W) = Ep,[Y | A, W]
e Full-data counterpart: Qp, ,(a, W) = Ep, ,[Y@ | W]
e Propensity score: go(W) = Pp[A=1]| W]
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Background on nonparametric asymptotic theory

Nonparametric EIF-based estimators possess numerous attractive
properties:

e Efficiency
e Root-n consistency and asymptotic normality

e No assumptions on outcome/PS models (robustness, flexibility)
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Background on nonparametric asymptotic theory

Motivation. Let ©(P) be the parameter of interest and ©(P,) be its
plug-in estimator.

e Let D(O, P) be the influence function ©(P) at P.

e The asymptotic behavior of ©(P,) is captured by the following von
Mises expansion:

Va(O(P,) ~ ©(P)) = ¥ Ep,[D(O, Po)] - v Ep, | D(O, )]

Term 1

+ \/E(Epn = E,DO)(D(O7 'E)n) - D(O’ PO))

Term 3

- \/ER('DO; ﬁn)
—_—

Term 4
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Background on nonparametric estimation theory

e Term 1: /nEp,[D(O, Py)]
e Converges to a mean-zero Gaussian r.v. with variance
Ep,[D(O, Po)?]
e EIF-based estimators minimize this asymptotic variance
e Term 2: \/nEp, [D(O, l-c’,,)}
e Asymptotic bias

e We construct estimators that eliminate this bias term

e Terms 3 & 4: Converges to 0 under standard assumptions

12/51



Background on nonparametric estimation theory

Estimators. By leveraging the EIF D(O, P), nonparametric estimators
correct first-order bias and attain semiparametric efficiency.

(i) One-step: Adds empirical EIF correction

0%)(P,) = ©(P,) + Ep,[D(O, P,)]

(i) Estimating equation: Solves the estimating equation

EPn[D(Oa 'E)n)] =0.

(iii) Targeted maximum likelihood (TML): Tilt P, to generate P*
such that Ep,[D(O, P¥)] = 0, and define @™ (P,) = O(P).

e TML estimators constrain estimates to the parameter space.
e We will look at an example later.
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Background on nonparametric estimation theory

Inference. Inference about ©(Py) follows naturally from asymptotic
normality.

In particular, the a-level Wald-type confidence interval for ©(Py) can be
constructed identically for the three estimators 9(*)(/5,,):

. 2
OM(P) £z 4y —E’%[D(no’ Fo)] :

where the term Ep,[D(O, Py)?] is substituted with Ep [D(O, P,)?] in
practice.
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Example: EIF of ATE

Intuitively, the EIF is the orthogonal projection of any influence function onto

the tangent space of the observed-data model.

e Influence function is the analogue of a gradient vector (in standard

calculus).

e Consider, for instance, the ATE defined in terms of the full-data model

OF (Px,0) = Epy o[Y™ — Y.

e If we had access to full data, the influence function would be given by
Y® — v _9(Px,).
e We project this IF onto the tangent space of the observed-data model to
obtain
A = 1-A
D(O,Py) =———+ (Y — Q(1,W)) - ———
(0, P) go(W)( (1, W) 1= g (W)

+ Qo(1, W) — Qo(0, W) — ©(Po).

(Y = Qo(0, W))
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Example: EIF of ATE

Deriving one-step and estimating equation estimators of the ATE using
the EIF, we obtain

n

1 A; 1-—A; =
Gos = Oee = nz[(go(w,-) 1 go(vv,-)){y" ~ Gl

i=1

+ Go(1, W) — Qo(0, vv,-)}

which coincides with the AIPW estimator for the ATE.

16 /51



Table of contents

3. TEM-VIPs for continuous outcomes

17/51



TEM-VIPs for continuous outcomes

Causal parameter. Suppose the outcome is continuous, and the
treatment effect of interest is the ATE, i.e. Ep, ,[Y() — YO].

First, we impose assumptions for computational convenience:

(A1) Centered covariates: Ep, ,[W;] = 0.
(A2) Nonzero variance: Ep, ,[W?] > 0.
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TEM-VIPs for continuous outcomes

Definition (TEM-VIP, with respect to ATE)
An (absolute) TEM-VIP of the j-th covariate is defined as a mapping

Covp, , [YD — YO W
WE(Pro) = Pral YT YT, W]
VPX,O [VVJ
By (V) YO
Epy o[ W/]
IE:PX,O {(QPX,Q(L W) - QPX,O(O’ W)) VVJ]

IE:Px,o [ijz]

The full estimand is then given by

wF My — RP, WA (Px0) = (Wi (Px,0), ..., WE(Px,0)).
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TEM-VIPs for continuous outcomes

Interpretation. The TEM-VIP WF(Px ) can be viewed as assessing the
correlation between the difference in potential outcomes and each
potential TEM, renormalized to be on the same scale as Y.

e Assume that the expectation of f(W) = C_)px,o(l, w) — C_)pX,O(O, w)
conditioned on W is linear in W, i.e. Ep, ([f(W) | Wj] = B;W.
Then, WF(Px o) is the vector of simple linear regression coefficients:

F _ Ep [f(W)W)] _ Epy [GW7]
\Uj (PX,O) - pr,o[vvj2] - EPX,O[VVJ'2] -

Bj-

e When the relationship between f(W) and the W;'s are nonlinear, the
parameter can be interpreted as a linear model projection:

\UJI':(PXﬁO) = argmin]EPx,o [((QPX,U(]" W) - QPX,D(Ov W)) - (O‘ + /BJ' VVJ))2] o

BjER
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TEM-VIPs for continuous outcomes

Under (A3) unconfoundedness and (A4) positivity assumptions, the
full-data TEM-VIP \IJJ-F(nyo) is identifiable from observed data:

Theorem 1 (ldentifiability of TEM-VIP)
Assuming that (A1), (A2), (A3) and (A4) hold, we have

"Uj(PO) — IE:F’o [(OO(L W) - C_)O(Ov W)) VVJ] _ \UJF('DX,O)o

En 7]

Hence, the parameter W : M — RP, W(Py) = (V1(Po), ..., Vp(Po)) is
equal to the full-data estimand WF(Px o).
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TEM-VIPs for continuous outcomes

Efficient influence function. The EIF provides the basis for the
construction of nonparametric estimators.

Proposition 1 (EIF of observed-data parameter)
Under (A1) and (A2), the EIF at P € M of W;(P) is given by

W, 2A—1

D;y(0,P) = EP[VVJ?] (Ag(W) +(1-A)(1-g(W))

(Y = QA W)

L3 W) — G0, W) — Wy(P) vv)

Remark. Note that the blue term corresponds to the uncentered EIF of
the ATE, which is the treatment effect of interest.

22/51



TEM-VIPs for continuous outcomes

Estimators.

(i) One-step and estimating equation estimators: The one-step and
estimating equation estimators of W;(P;) are identical. Let Q, and gn be
estimators of Qo and gp trained of P, and included in P Then,

©S) A\ w(EE) /B
Vi) = WP ) = & W2§ Wy
i=1 Uoi=1

" ( 2A; —1 (
Aign(Wi) + (1 — A))(1 — gn(W5))

Yi — Qu(Ai, Wh))
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TEM-VIPs for continuous outcomes

(ii) Targeted maximum likelihood (TML) estimator

Step 1. Define the negative log-likelihood loss function for Q as
L(0; Q) = —log{ Q(A, W) (1 - Q(A, W)},
and a parametric working submodel for Q as
Qi(e)(A, W) = logit ™' {logit Q(A, W) + eH;(A, W)},

where
w; 2A—1
Ep[W?] Ag(W) + (1 - A)(1 - g(W))

H;(A, W) =
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TEM-VIPs for continuous outcomes

Step 2. Denoting an initial estimator of Qo trained on P, by QS update
Q° by computing €y j such that

ei,j = arg mein Ep, [L(O; QS,J(e))] .

Compute the tilted conditional outcome estimator Q%J = Q?J-(e},_j) and
the tilted distribution P}, where Q,? is replaced by Q}J in ,‘5,,.

Step 3. The TML estimator of the j-th TEM-VIP is given by

WIME(Py) = Wi(Py):
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TEM-VIPs for continuous outcomes

Asymptotic behavior. Note that the asymptotic distributions of
®OS(P,), ®EE(P,) and ®TML(P,) are identical due to their dependence

on the common EIF D;(O, Py).

First, we establish consistency results and its double-robustness.
(A5) Outcome model estimator consistency: || Q.(A, W) — Qo(A, W)||3 = op(1).
(A6) PS estimator consistency: ||g.(W) — go(W)]|3 = op(1).

Proposition 2 (Consistency)
Under (A1) and (A2), and either (A5) or (A6),

oM (B,) L o(Py),  x=0S, EE, TML.
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TEM-VIPs for continuous outcomes

Moreover, the asymptotic normality of the estimators’ smapling distributions
can be specified under the following assumptions:

(A7) Donsker conditions: There exists a Po-Donsker class Gy such that
Pp, [D,-(a P,) € go] 1 and

Ep, [(Dj(o, P,) — D;(O, Py))’ | ﬁn] = op(1) for each j.

(A8) Shared rate convergence:
1Qn(A, W) — Qo(A, W)l2 [lga(W) — go(W)ll2 = op(n~*/?).
(A9) Uniformly bounded covariates: |W;| < C for j=1,...,p.

Theorem 2 (Asymptotic normality)
Under (A1), (A2), (A7), (A8) and (A9),

Va(WO(P,) — W;(Po)) 2 N(0, Ep,[D;(O, Po)?]), * = OS, EE, TML.
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General framework for TEM-VIPs

The workflow presented in the previous section for continuous outcomes can be
unified into a general framework.

For instance, suppose we are interested in causal effects on right-censored
time-to-event outcomes, which are common in clinical trials.

e Causal parameters of interest are often built upon the conditional survival
function Sp, o(t | a, W) = Ppy o[T® > t | W], where T denotes the
(potential) event time.

e CATE of survival probability at time t:
EPX,O [SPX,O(t | 1, W) - SPx.o(t | 0, W) } W] o
e Difference in conditional restricted mean survival times (RMSTs):

Epy [min{T“),r} —min{T®, &} w

t
= Ep,, UO [Spy ot | 1, W) — Spy o (u| 0, W)} du

w).
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General framework for TEM-VIPs

Step 1. Select a full-data, pathwise differentiable parameter ®F(Px o) of
some treatment effect that is relevant to the problem at hand.

» ATE (for continuous/binary outcomes)

®F(Px0) = Epy,[Y® — YO

» Difference in RMSTs (for right-censored time-to-event outcomes)

®F (Px0) = Epy o [min{ TM, t} — min{T®, t}]
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General framework for TEM-VIPs

Step 2. Define f(W) such that Ep, ,[f(W)] = ®F(Px ).

» CATE (for estimation of ATE)
f(W) = Opx.o(lv W) - QPX,O(O’ W)
» Conditional difference in RMSTs (for difference in RMSTs)
t
F(W) = [ {Speo(u| 1,W) = Spy(u | 0. W)} du
Jo
Under (A1) and (A2), the TEM-VIP of the j-th covariate @f is given by

@F _ EPX,O [f( W) VV.I]
’ Ep, o [WF]
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General framework for TEM-VIPs

Step 3. Establish the identifiability of the TEM-VIP.

e Let ©; and ® be the observed-data counterparts of ©f and ¢F,
respectively.

e The conditions establishing @f(Px,o) = ©;(Py) are identical to the
conditions for the identifiability of the treatment effect of interest,
i.e., (DF(PX"O) = d)(Po)

e e.g., consistency, unconfoundedness, positivity.
e The only additional assumption is that W; has bounded

variance.
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General framework for TEM-VIPs

Step 4. Derive the EIF of the TEM-VIP.

If the uncentered EIF of ®(Py) is given by d(O, Py), then the EIF of the
TEM-VIP is given by
W

W {d(0, Po) — W;0;(Po)} -
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General framework for TEM-VIPs

Step 5. Construct the EIF-based estimators for the TEM-VIP.
e These include (i) one-step, (ii) estimating equation and (iii) TML
estimators.

e The asymptotic properties of the EIF-based estimators are identical
to those of the nonparametric efficient estimators of ®, such as
double-robustness, provided that W; is bounded.
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Simulation studies

Through simulation studies, we observe:

(i) Finite-sample performance of the proposed one-step and TML
estimators.

(ii) The estimators’ capacity to recover TEMs, compared to
(augmented) modified covariates methods (Tian et al. (2014) &
Chen et al. (2017).

We consider three DGPs: (i) continuous outcome, observational study,
(ii) binary outcome, observational study and (iii) survival outcome, RCT.
e Sample sizes: n = 125,250, 500, 1,000, 2,000

e 200 MC simulations under each setting
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Simulation setup

DGP 1. Continuous outcome, observational study

W ~ N(0, ls00x500)

Al W ~ Bernoulli(logiF1 (%(Wl — W, + W3)>)

5 5)
YIAW~142Y W+ (5A-2)> W+e, &~ N(0,1/2)

j=1 j=1
DGP 2. Binary outcome, observational study

1, =]
W ~ N(O,ZIOOXIOO)a zI'j = . .1—1.8 .
0.1]i —j|7°, otherwise

AW~ Bernoulli(logitf1 (*(Wl + Ws + W3)>>

jury

4
5 1 5
Y | A, W ~ Bernoulli <|ogit1 (1 —2A+) W+ (A = 5) m))
j=1 j=1
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Simulation setup

DGP 3. Right-censored time-to-event outcome, randomized control trial

W ~ N(0, X300x300)
A~ Bernoulli(%)

ClAW ~ min{NegBin(l, logit (5 + A + W1)> , 10}

10
T | A W, C ~ NegBin (1, logit ™" (—2 —A+(10A-5)> " W,))

j=1
T =min{T,C}
A=I(T > c)

e The covariance matrix X is block-diagonal, with each block corresponding

to ten moderately correlated features.

e The target estimand is defined based on difference in RMSTs at t =9
(total duration consists of 10 time units).
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Simulation 1: Finite-sample performance

Simulation 1. Finite-sample performance of estimators
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Figure 1. Empirical bias and variance of one-step and TML estimators in the
continuous, binary, and time-to-event outcome simulation scenarios.
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Simulation 2: TEM discovery and classification

Simulation 2. Estimators’ capacity to recover TEMs

e The estimators’ ability to distinguish TEMs is evaluated in terms of
empirical false discovery rate (FDR), true negative rate (TNR) and
true positive rate (TPR).

e Two-sided Wald-type tests at the 5% level were adjusted for
multiple testing using the Benjamini-Hochberg procedure.
e The one-step and TML estimators are compared to modified
covariates and augmented modified covariates methods with LASSO.
e Modified covariates: Outcomes are transformed so that only the
treatment-covariate interactions in a GLM need be modeled.
e Augmented modified covariates: The transformed outcomes are
modeled as a function of all covariates to improve efficiency.
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Simulation 2: TEM discovery and classification
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Figure 2. TEM classification results of one-step, TML, modified covariates,
augmented modified covariates estimators in the continuous, binary, and time-to-event
outcome simulation scenarios.
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Data application

The proposed framework is applied to a clinical trial dataset with a
right-censored time-to-event outcome.

Data source. Subset of FinHER dataset provided by Loi et al. (2014)

e Trastuzumab significantly improves clincal outcomes of breast cancer
patients with tumors overexpressing HER2; however, the
improvement is not uniform.

e Patients with overexpressed HER2 were randomized to receive either
9 weekly trastuzumab infusions or no trastuzumab as adjuvant
treatment for early-stage breast cancer.
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Data application

Variables of interest.
e Treatment: Trastuzumab (antibody targeting the HER2 oncogene)
e Covariates (potential TEMs): 500 genes selected by variability

e Outcome: Distant disease-free survival, i.e. time between
randomization and first cancer recurrence or death

Implementation of proposed methodology.
e Target estimand: RMST-based TEM-VIP

e Estimation: TML estimator based on conditional failure and
censoring hazards estimates by a Super Learner
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Data application

Result 1. Classification of covariates into TEMs and non-TEMs

(C) (b)

-log10(P-Value)

Cumulative Probability

Nominal P-Values TEM-VIP Estimates

Figure 3. (a) Empirical cdf of p-values.

(b) Volcano plot of the 500 most variable genes’ TEM-VIP estimates and associated
p-values. Yellow genes are deemed unimportant due to their small estimated effect
sizes and larger p-values; orange genes possess a meaningful estimated effect but fail
to achieve the adjusted p-value cut-off; red genes are significant at the 5% FDR level
and have large estimated TEM-VIPs.
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Data application

Result 2. Top five selected treatment effect modifiers

Gene Estimate SE Adj. p-value
1 EPPK1 -0.116 0.025 .001
2 NDUFB3 -0.121 0.028 .004
3 BNIP3L —-0.108 0.025 .004
4 PNKD -0.106 0.027 .006
5 DUSP4 -0.097 0.024 .006

All of the genes above have previously been linked to breast cancer:

e EPPK1: Increased expression has been linked to estrogen-related receptor
v, which is associated with breast cancer growth suppression.

e NDUPF3: A single nucleotide polymorphism in NDUFB3 promoter is
reported to be significantly associated with estrogen receptor negative
breast cancer.
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Data application

Result 3. Clustering of patients with respect to predicted TEMs

Figure 3. (c) The log-transformed gene

T : expression data of genes with meaningful
f ¥
ol | § i effect estimates are used to cluster
L8l i, patients. Hierarchical clustering with
}

E‘_ § complete linkage is used for patients and
| identified TEMs alike.
t

Predicted TEMs.
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Data application

Observations.

o (Result 1) We observe a continuum in the biomarkers’ capacity to
influence the treatment effect, in terms of both statistical
significance and effect size.

e Hypothesis testing alone may not be adequate.

e One can instead deem a biomarker of clnical interest if it is
significant at the 5% FDR level and its absolute estimated TEM-VIP
is larger than 0.05.

e (Result 3) The gene expression data produce multiple distinct
patient clusters.
e However, the authors suggest that it should be considered solely as a
diagnostic tool, since redefining subgroups within the same dataset
based on the estimated TEM-VIPs may result in overfitting.
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Discussion

Contributions of the paper:

(i) Proposed a general workflow for defining TEM-VIPs with respect to
the treatment effect of interest and for deriving associated
nonparametric estimators based on the EIF.

(i) The methodology is applicable to various types of outcomes, and the
performance is validated under high-dimensional settings.

Future directions:

(i) Statistically rigorous subgroup discovery.

(ii) Improving treatment effect estimation in high-dimensional settings
by exploiting TEM-VIPs as variable filters.

(iii) Deriving standardized TEM-VIPs.
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