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FromMarkov to Chernoff

In many settings, we are interested in whether a random variable is close to its mean

or median.

• Deviation inequalities (tail bounds): 𝑃(𝑋 − 𝜇 ≥ 𝑡)
• Concentration inequalities: 𝑃(|𝑋 − 𝜇| ≥ 𝑡)

Two classical inequalities form the foundation for bounding tail probabilities:

• Markov’s inequality: Controlling the moments.

• Chernoff bound: Controlling the mgf.
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FromMarkov to Chernoff

Proposition (Markov’s inequality)

For a non-negative random variable 𝑋with finite mean,

𝑃(𝑋 ≥ 𝑡) ≤
𝔼[𝑋]
𝑡

for all 𝑡 > 0.

• If 𝑋 has a central moment of order 𝑘, the following is a direct corollary:

𝑃(|𝑋 − 𝜇| ≥ 𝑡) ≤
𝔼[|𝑋 − 𝜇|𝑘]

𝑡𝑘
for all 𝑡 > 0. (1)

• Setting 𝑘 = 2 yields the well-known Chebyshev’s inequality.
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FromMarkov to Chernoff

Proposition (Chernoff bound)

For a random variable 𝑋with an mgf 𝜙(𝜆) = 𝔼[𝑒𝜆(𝑋−𝜇)] defined on |𝜆| ≤ 𝑏,

𝑃(𝑋 − 𝜇 ≥ 𝑡) ≤ inf
𝜆∈[0,𝑏]

𝑒−𝜆𝑡 𝔼[𝑒𝜆(𝑋−𝜇)]. (2)

Proof. From Markov’s inequality,

𝑃(𝑋 − 𝜇 ≥ 𝑡) = 𝑃(𝑒𝜆(𝑋−𝜇) ≥ 𝑒𝜆𝑡) ≤
𝔼[𝑒𝜆(𝑋−𝜇)]

𝑒𝜆𝑡
.

Optimize the choice of 𝜆 to obtain the tightest result. Remark. The moment bound (1) with

an optimal choice of 𝑘 is never worse than the Chernoff bound (2).
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Tail behavior of random variables

Consequently, it is natural to classify random variables in terms of their mgfs, or

more intuitively, the lightness of their tails.

(i) Sub-Gaussian variables

• Eventually dominated by a Gaussian variable.

• The exponent term in the tail probabilities scales quadratically.

(ii) Sub-exponential variables

• Tails are heavier than sub-Gaussians - eventually the exponent term in the tail

probabilities scales linearly.

• A variable is sub-exponential if and only if its mgf exists in a neighborhood

around zero.
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Tail behavior of random variables

Figure reference: Chu et al. (2020), A High-Resolution and Low-Frequency Acoustic Beamforming Based on

Bayesian Inference and Non-Synchronous Measurements.
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Sub-Gaussian variables and Hoeffding bounds

Definition 2.2 (Sub-Gaussianity)

A random variable 𝑋with mean 𝜇 = 𝔼[𝑋] is sub-Gaussian if there is a positive
number 𝜎 such that

𝔼[𝑒𝜆(𝑋−𝜇] ≤ 𝑒𝜎2𝜆2/2 for all 𝜆 ∈ ℝ.

• The constant 𝜎 is referred to as the sub-Gaussian parameter.

• Any Gaussian variable with variance 𝜎2 is sub-Gaussian with parameter 𝜎.
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Sub-Gaussian variables and Hoeffding bounds

The following proposition characterizes the tail behavior of sub-Gaussians:

Proposition (Sub-Gaussian tail bound)

If 𝑋 is sub-Gaussian with parameter 𝜎, it satisfies the upper deviation inequality

𝑃(𝑋 − 𝜇 ≥ 𝑡) ≤ 𝑒−
𝑡2

2𝜎2 for all 𝑡 ≥ 0.

Proof. Applying the Chernoff bound, 𝑃(𝑋 − 𝜇 ≥ 𝑡) ≤ inf𝜆∈ℝ 𝑒−𝜆𝑡 𝔼[𝑒𝜆(𝑋−𝜇)] = 𝑒
− 𝑡2

2𝜎2 .

Since 𝑋 is sub-Gaussian if and only if −𝑋 is sub-Gaussian, any sub-Gaussian variable

satisfies the concentration inequality

𝑃(|𝑋 − 𝜇| ≥ 𝑡) ≤ 2𝑒−
𝑡2

2𝜎2 for all 𝑡 ∈ ℝ.
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Sub-Gaussian variables and Hoeffding bounds

Example 2.3 (Rademacher variables)

A Rademacher random variable 𝜀 takes the values {−1, +1} equiprobably. We claim that it is

sub-Gaussian with parameter 𝜎 = 1.

Using the power-series expansion for the exponential, we obtain

𝔼[𝑒𝜆𝜀] =
1
2
(𝑒𝜆 + 𝑒−𝜆) =

1
2 �

∞
�
𝑘=0

(−𝜆)𝑘

𝑘!
+

∞
�
𝑘=0

𝜆𝑘

𝑘! �

=
∞
�
𝑘=0

𝜆2𝑘

(2𝑘)!

≤ 1 +
∞
�
𝑘=1

𝜆2𝑘

2𝑘𝑘!

= 𝑒𝜆2/2.
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Sub-Gaussian variables and Hoeffding bounds

Example 2.4 (Bounded random variables)

Let 𝑋 be zero-mean, and supported on some interval [𝑎, 𝑏]. Letting 𝑋′ be an independent
copy, for any 𝜆 ∈ ℝ, we have

𝔼𝑋[𝑒𝜆𝑋] = 𝔼𝑋[𝑒𝜆(𝑋−𝔼𝑋′[𝑋′])] ≤ 𝔼𝑋,𝑋′[𝑒𝜆(𝑋−𝑋′)],

where the last inequality follows from the convexity of the exponential.

Letting 𝜀 be an independent Rademacher variable, note that the distribution of 𝑋 −𝑋′ is the
same as that of 𝜀(𝑋 − 𝑋′), so that we have

𝔼𝑋,𝑋′[𝑒𝜆(𝑋−𝑋′)] = 𝔼𝑋,𝑋′[𝔼𝜀[𝑒𝜆𝜀(𝑋−𝑋
′)]] ≤ 𝔼𝑋,𝑋′[𝑒

𝜆2(𝑋−𝑋′)2

2 ],

with the inequality following from the previous example.
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Sub-Gaussian variables and Hoeffding bounds

Example 2.4 (Bounded random variables; continued)

Since |𝑋 − 𝑋′| ≤ 𝑏 − 𝑎, we are guaranteed that

𝔼𝑋,𝑋′[𝑒
𝜆2(𝑋−𝑋′)2

2 ] ≤ 𝑒
𝜆2(𝑏−𝑎)2

2 ,

and hence 𝑋 is sub-Gaussian with parameter at most 𝜎 = 𝑏 − 𝑎.

Remarks.

• The proof technique is a simple example of a symmetrization argument - we introduce

an independent copy 𝑋′, and symmetrize the problem using an independent

Rademacher variable.

• The sub-Gaussian parameter can be further sharpened to 𝜎 = 𝑏−𝑎
2
.
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Sub-Gaussian variables and Hoeffding bounds

Just as the property of Gaussianity is preserved by linear operations, so is the

property of sub-Gaussianity.

• If 𝑋1 and 𝑋2 are independent sub-Gaussians with parameters 𝜎1 and 𝜎2, then
𝑋1 + 𝑋2 is sub-Gaussian with parameter √𝜎1 + 𝜎2.

• Consequently, we obtain an important result, known as the Hoeffding bound.

Proposition 2.5 (Hoeffding bound)

Suppose that the variables 𝑋𝑖, 𝑖 = 1, … , 𝑛, are independent, and 𝑋𝑖 has mean 𝜇𝑖 and
sub-Gaussian parameter 𝜎𝑖. Then, for all 𝑡 ≥ 0, we have

𝑃 �
𝑛
�
𝑖=1
(𝑋𝑖 − 𝜇𝑖) ≥ 𝑡� ≤ exp

⎛
⎜⎜⎜⎝−

𝑡2

2∑𝑛
𝑖=1 𝜎

2
𝑖

⎞
⎟⎟⎟⎠ .
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Sub-Gaussian variables and Hoeffding bounds

Remark.

The Hoeffding bound is often stated only for the special case of bounded random

variables. If 𝑋𝑖 ∈ [𝑎, 𝑏] for all 𝑖 = 1, … , 𝑛, it is sub-Gaussian with parameter 𝜎 =
𝑏−𝑎
𝑛 , so

that we obtain the bound

𝑃 �
𝑛
�
𝑖=1
(𝑋𝑖 − 𝜇𝑖) ≥ 𝑡� ≤ exp �−

2𝑡2

𝑛(𝑏 − 𝑎)2 �
.

We conclude the discussion on sub-Gaussianity with equivalent characterizations

of sub-Gaussian variables.
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Sub-Gaussian variables and Hoeffding bounds

Theorem 2.6 (Equivalent characterizations of sub-Gaussian variables)

Given any zero-mean random variable 𝑋, the following properties are equivalent:
(i) There is a constant 𝜎 ≥ 0 such that

𝔼[𝑒𝜆𝑋] ≤ 𝑒
𝜆2𝜎2
2 for all 𝜆 ∈ ℝ.

(ii) There is a constant 𝑐 ≥ 0 and Gaussian variable 𝑍 ∼ 𝑁(0, 𝜏2) such that

𝑃(|𝑋| ≥ 𝑠) ≤ 𝑐 𝑃(|𝑍| ≥ 𝑠) for all 𝑠 ≥ 0.

(iii) There is a constant 𝜃 ≥ 0 such that

𝔼[𝑋2𝑘] ≤
(2𝑘)!
2𝑘𝑘!

𝜃2𝑘 for all 𝑘 = 1, 2, … .

(iv) There is a constant 𝜎 ≥ 0 such that

𝔼 �𝑒
𝜆𝑋2

2𝜎2 � ≤
1

√1 − 𝜆
for all 𝜆 ∈ [0, 1).
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Sub-exponential variables and Bernstein bounds

Sometimes, the notion of sub-Gaussianity is too restrictive; sub-exponentiality

offers a more relaxed condition.

Definition 2.7 (Sub-exponentiality)

A random variable 𝑋with mean 𝜇 − 𝔼[𝑋] is sub-exponential if there are
non-negative parameters (𝜈, 𝛼) such that

𝔼[𝑒𝜆(𝑋−𝜇)] ≤ 𝑒
𝜈2𝜆2
2 for all |𝜆| <

1
𝛼
.

• Here, we have two separate parameters, 𝜈 (corresponding to the variability)
and 𝛼 (corresponding to the range).

• Any sub-Gaussian variable is sub-exponential, with parameters (𝜈, 𝛼) = (𝜎, 0).
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Sub-exponential variables and Bernstein bounds

Example 2.8 (Sub-exponential but not sub-Gaussian)

Let 𝑍 ∼ 𝑁(0, 1), and consider the random variable 𝑋 = 𝑍2.

• Since 𝔼[𝑒𝜆(𝑋−1)] = 𝑒−𝜆

√1−2𝜆
, the mgf of 𝑋 is infinite for 𝜆 > 1

2 , and thus 𝑋 is not

sub-Gaussian.

• However, 𝑋 is sub-exponential with parameters (𝜈, 𝛼) = (2, 4).
For |𝜆| < 1/4, we have

𝔼[𝑒𝜆(𝑋−1)] =
𝑒−𝜆

√1 − 2𝜆
≤ 𝑒2𝜆2.

16/88



Sub-exponential variables and Bernstein bounds

Proposition 2.9 (Sub-exponential tail bound)

Suppose that 𝑋 is sub-exponential with parameters (𝜈, 𝛼). Then,

𝑃(𝑋 − 𝜇 ≥ 𝑡) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝑒−

𝑡2

2𝜈2 if 0 ≤ 𝑡 ≤ 𝜈2

𝛼 ,

𝑒−
𝑡
2𝛼 for 𝑡 > 𝜈2

𝛼 .

• The behavior of 𝑋 is sub-Gaussian toward the center, however the tail

eventually decays like a exponential variable.

• As with the Hoeffding inequality, a concentration inequality bounding

𝑃(|𝑋 − 𝜇| ≥ 𝑡) can be derived with an additional factor of 2.
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Sub-exponential variables and Bernstein bounds

Proof of Prop 2.9.

WLOG assume 𝜇 = 0, and apply the Chernoff bound:

𝑃(𝑋 ≥ 𝑡) ≤ inf
𝜆
𝑒−𝜆𝑡 𝔼[𝑒𝜆𝑋] ≤ exp �−𝜆𝑡 +

𝜆2𝜈2

2 �, for all 𝜆 ∈ [0, 𝛼−1).

Now, let 𝑔(𝜆, 𝑡) = −𝜆𝑡 + 𝜆2𝜈2

2
, and consider the quantity 𝑔∗(𝑡) = inf𝜆∈[0,𝛼−1) 𝑔(𝜆, 𝑡). Note that, for

each fixed 𝑡 ≥ 0, 𝑔(𝜆, 𝑡) is a quadratic function of 𝜆 that attains its minimum − 𝑡2

2𝜈2
at 𝜆∗ = 𝑡

𝜈2
.

If 𝜆∗ ≤ 𝛼−1, we obtain the global minimum 𝑔∗(𝑡) = − 𝑡2

2𝜈2
on 0 ≤ 𝑡 ≤ 𝜈2

𝛼
. Otherwise, the

constrained minimum is achieved at the boundary 𝜆† = 𝛼−1, giving the bound

𝑔∗(𝑡) = 𝑔(𝜆†, 𝑡) = −
𝑡
𝛼
+
1
2𝛼
𝜈2

𝛼
≤ −

𝑡
2𝛼
.
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Sub-exponential variables and Bernstein bounds

Direct calculation of the mgf may be impractical in many settings. Bernstein’s

condition offers a sufficient criterion for sub-exponentiality by controlling the

moments.

Definition (Bernstein’s condition)

For a random variable 𝑋with mean 𝜇 and variance 𝜎2, Bernstein’s condition with
parameter 𝑏 is satisfied if

|𝔼[(𝑋 − 𝜇)𝑘]| ≤
1
2
𝑘! 𝜎2 𝑏𝑘−2 for 𝑘 = 2, 3, … . (3)
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Sub-exponential variables and Bernstein bounds

When 𝑋 satisfies the Bernstein condition, then it is sub-exponential with

parameters determined by 𝜎2 and 𝑏:

Proposition 2.10 (Bernstein-type bound)

For any variable satisfying the Bernstein condition (3), we have

𝔼[𝑒𝜆(𝑋−𝜇)] ≤ 𝑒
𝜆2𝜎2/2
1−𝑏|𝜆| for all |𝜆| <

1
𝑏
,

and, moreover, the concentration inequality

𝑃(|𝑋 − 𝜇| ≥ 𝑡) ≤ 2𝑒
− 𝑡2

2(𝜎2+𝑏𝑡) for all 𝑡 ≥ 0.
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Sub-exponential variables and Bernstein bounds
Proof of Prop 2.10.

By the power series expansion of the exponential, we have

𝔼[𝑒𝜆(𝑋−𝜇)] = 1 +
𝜆2𝜎2

2
+

∞
�
𝑘=3

𝜆𝑘
𝔼[(𝑋 − 𝜇)𝑘]

𝑘!

≤ 1 +
𝜆2𝜎2

2
+
𝜆2𝜎2

2

∞
�
𝑘=3
(|𝜆|𝑏)𝑘−2.

Then, for any |𝜆| < 1/𝑏, we obtain

𝔼[𝑒𝜆(𝑋−𝜇)] ≤ 1 +
𝜆2𝜎2/2
1 − 𝑏|𝜆|

≤ 𝑒
𝜆2𝜎2/2
1−𝑏|𝜆| ,

using the summation of the geometric series and the bound 1 + 𝑡 ≤ 𝑒𝑡.

Moreover, it follows that 𝑋 is (√2𝜎, 2𝑏)-sub-exponential, since 𝔼[𝑒𝜆(𝑋−𝜇)] ≤ 𝑒
𝜆2(√2𝜎)2

2 .

For the concentration inequality, set 𝜆 = 𝑡
𝑏𝑡+𝜎2

∈ [0, 1/𝑏) in the Chernoff bound.
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Sub-exponential variables and Bernstein bounds

Remark 1.

• Like the sub-Gaussian property, the sub-exponential property is preserved

under summation for independent random variables.

• If {𝑋𝑘}𝑛𝑘=1 is an independent sequence of random variables with mean 𝜇𝑘 and
sub-exponential parameters (𝜈𝑘, 𝛼𝑘), we can bound the of∑

𝑛
𝑘=1(𝑋𝑘 − 𝜇𝑘) as

𝔼[𝑒𝜆∑
𝑛
𝑘=1(𝑋𝑘−𝜇𝑘)] =

𝑛
�
𝑘=1

𝔼[𝑒𝜆(𝑋𝑘−𝜇𝑘] ≤
𝑛
�
𝑘=1

𝑒
𝜆2𝜈2𝑘
2 ,

valid for all |𝜆| < (max𝑘=1,…,𝑛 𝛼𝑘)−1.
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Sub-exponential variables and Bernstein bounds

Remark 1 (continued).

• Consequently, ∑𝑛
𝑘=1(𝑋𝑘 − 𝜇𝑘) is (𝜈∗, 𝛼∗)-sub-exponential, with

𝜈∗ =
�

𝑛
�
𝑘=1

𝜈2𝑘, 𝛼∗ = max
𝑘=1,…,𝑛

𝛼𝑘.

• This observation leads to the tail bound

𝑃 �
1
𝑛

𝑛
�
𝑘=1
(𝑋𝑘 − 𝜇𝑘) ≥ 𝑡� ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑒
− 𝑛𝑡2

2(𝜈2∗ /𝑛) if 0 ≤ 𝑡 ≤ 𝜈2∗
𝑛𝛼∗
,

𝑒−
𝑛𝑡
2𝛼∗ for 𝑡 > 𝜈2∗

𝑛𝛼∗
.
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Sub-exponential variables and Bernstein bounds

Remark 2.

• Prop 2.10 has an important consequence even for bounded random variables.

• Suppose |𝑋 − 𝜇| < 𝑏. Then 𝑋 satisfies the Bernstein condition with parameter

𝑐 = 𝑏/3, since
𝔼[|𝑋 − 𝜇|𝑘] ≤ 𝜎2𝑏𝑘−2 = 𝜎23𝑘−2𝑐𝑘−2 ≤

𝑘!
2
𝜎2𝑐𝑘−2,

using the inequality 3𝑘−2 ≤ 𝑘!
2 for all 𝑘 ≥ 2.

• Since the Bernstein bound involves both the variance 𝜎2 and the bound 𝑏, it is
substantially better than the sub-Gaussian bound when 𝜎2 ≪ 𝑏2.

24/88



Sub-exponential variables and Bernstein bounds

Remark 2 (continued).

• Bernstein bound is also often stated for the bounded case where 𝑋𝑖 are
independent mean-zero variables with |𝑋𝑖| ≤ 𝑏 for all 𝑖 = 1, … , 𝑛. Letting

𝜎2 = 1
𝑛
∑𝑛
𝑖=1 𝜎

2
𝑖 , we have

𝑃 �
1
𝑛

𝑛
�
𝑖=1
𝑋𝑖 ≥ 𝑡� ≤ exp �

𝑛𝑡2

2𝜎2 + 2𝑐𝑡/3�
for all 𝑡 ≥ 0.

• In general, for bounded random variables, Bennett’s inequality can be used to

provide sharper control on the tails.
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Sub-exponential variables and Bernstein bounds

Remark 3. If a variable is known to be bounded only from above, it is still possible to

derive one-sided Bernstein-type bounds:

Proposition 2.14 (One-sided Bernstein’s inequality)

If 𝑋 ≤ 𝑏 almost surely, then

𝔼[𝑒𝜆(𝑋−𝔼[𝑋])] ≤ exp

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜆2

2
𝔼[𝑋2]

1 − 𝑏𝜆
3

⎞
⎟⎟⎟⎟⎟⎟⎠ for all 𝜆 ∈ [0, 3/𝑏).

Consequently, given 𝑛 independent random variables such that 𝑋𝑖 ≤ 𝑏 almost surely, we
have

𝑃 �
1
𝑛

𝑛
�
𝑖=1
(𝑋𝑖 − 𝔼[𝑋𝑖]) ≥ 𝛿� ≤ exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

𝑛𝛿2

2 � 1
𝑛
∑𝑛

𝑖=1𝔼[𝑋
2
𝑖 ] +

𝑏𝛿
3
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Sub-exponential variables and Bernstein bounds

Example 2.11 (𝜒2-variables)

Let 𝑌 ≔ ∑𝑛
𝑘=1 𝑍

2
𝑘 be a 𝜒2-distributed with 𝑛 degrees of freedom, where

𝑍𝑘
𝑖.𝑖.𝑑.∼ 𝑁(0, 1).
• We have shown in Example 2.8 that 𝑍2𝑘 is (2, 4)-sub-exponential.
• Consequently, 𝑌 is (2√𝑛, 4)-sub-exponential, and thus we obtain the two-sided
tail bound

𝑃 ��
1
𝑛

𝑛
�
𝑘=1

𝑍2𝑘 − 1� ≥ 𝑡� ≤ 2𝑒−𝑛𝑡
2/8 for all 𝑡 ∈ (0, 1).

The concentration of 𝜒2-variables plays an important role in analyzing procedures
based on random projections, as illustrated in the next example.
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding)

Suppose that we are given 𝑁 ≥ 2 distinct vectors {𝑢1, … , 𝑢𝑁}, with each vector lying in ℝ𝑑.

If the data dimension 𝑑 is large, it might be expensive to store and manipulate the original
dataset. Thus, one might be interested in projecting the vectors onto a space of lower

dimension.

• We aim to achieve dimensionality reduction by constructing a mapping 𝐹 ∶ ℝ𝑑 → ℝ𝑚

with 𝑚 ≪ 𝑑, while preserving some key features.
• The Johnson-Lindenstrauss embedding preserves pairwise distanceswith a multiplicative

tolerance 𝛿 ∈ (0, 1), so that

(1 − 𝛿) ≤
||𝐹(𝑢𝑖) − 𝐹(𝑢𝑗)||22
||𝑢𝑖 − 𝑢𝑗||22

≤ (1 + 𝛿) for all pairs 𝑢𝑖 ≠ 𝑢𝑗. (4)
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding; continued)

We can construct such a mapping 𝐹 as follows:
• First, form a random matrix X ∈ ℝ𝑚×𝑑 filled with independent 𝑁(0, 1) entries.
• Then, define a linear mapping 𝐹 ∶ ℝ𝑑 → ℝ𝑚 via 𝑢 ↦ X𝑢/√𝑚.

We now verify that 𝐹 satisfies the bound (4) with high probability.
• Let 𝑥𝑖 denote the 𝑖-th row of X, and consider some fixed 𝑢 ≠ 0.
• Since 𝑥𝑖 is a standard normal vector, the variable ⟨𝑥𝑖, 𝑢/||𝑢||2⟩ is also standard Gaussian.
• Hence, the quantity

𝑌 ≔
||X𝑢||22
||𝑢||22

=
𝑚
�
𝑖=1
⟨𝑥𝑖, 𝑢/||𝑢||2⟩

follows a 𝜒2-distribution with 𝑚 degrees of freedom, due to the independence of rows.
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding; continued)

• Therefore, applying the result from the previous example, we obtain

𝑃 ��
||X𝑢||22
𝑚||𝑢||22

− 1� ≥ 𝛿� ≤ 2𝑒−𝑚𝛿
2/8 for all 𝛿 ∈ (0, 1).

• Rearranging and recalling the definition of 𝐹 yields the bound

𝑃 �
||𝐹(𝑢)||22
||𝑢||22

∉ [1 − 𝛿, 1 + 𝛿]� ≤ 2𝑒−𝑚𝛿
2/8 for any fixed 0 ≠ 𝑢 ∈ ℝ𝑑.
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding; continued)

• Applying the union bound with �𝑁2� distinct data points, we conclude that

𝑃 �
||𝐹(𝑢𝑖 − 𝑢𝑗)||22
||𝑢𝑖 − 𝑢𝑗||22

∉ [1 − 𝛿, 1 + 𝛿] for some 𝑢𝑖 ≠ 𝑢𝑗� ≤ 2�
𝑁
2�
𝑒−𝑚𝛿2/8.

• For any 𝜖 ∈ (0, 1), this probability can be driven below 𝜖 by choosing 𝑚 < 16
𝛿2

log(𝑁/𝜖).
Note that this quantity does not depend on the original dimension 𝑑, and scales only
logarithmically with the number of data points 𝑁.
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Sub-exponential variables and Bernstein bounds

Theorem 2.13 (Equivalent characterizations of sub-exponential variables)

For a zero-mean random variable 𝑋, the following statements are equivalent:
(i) There are non-negative numbers (𝜈, 𝛼) such that

𝔼[𝑒𝜆𝑋] ≤ 𝑒
𝜈2𝜆2
2 for all |𝜆| <

1
𝛼
.

(ii) There is a positive number 𝑐0 > 0 such that 𝔼[𝑒𝜆𝑋 < ∞ for all |𝜆| ≤ 𝑐0.
(iii) There are constants 𝑐1, 𝑐2 > 0 such that

𝑃(|𝑋| ≥ 𝑡) ≤ 𝑐1𝑒−𝑐2𝑡 for all 𝑡 > 0.

(iv) The quantity 𝛾 ≔ sup𝑘≥2 �
𝔼[𝑋𝑘]
𝑘! �

1/𝑘
is finite.
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Background on martingales

• So far, we have covered two elementary bounds—namely, the Hoeffding and Bernstein

bounds—which provide useful results for sub-Gaussian, sub-exponential, or bounded

variables.

• Often, we are also interested in the behavior of 𝑓(𝑋) − 𝔼[𝑓(𝑋)]. When the function 𝑓
satisfies a certain condition, called the bounded difference property, we can derive a

Hoeffding-like bound.

• Such a bound is obtained via a telescoping decomposition

𝑓(𝑋) − 𝔼[𝑓(𝑋)] = 𝑌𝑛 − 𝑌0 =
𝑛
�
𝑘=1
(𝑌𝑘 − 𝑌𝑘−1),

where the sequence 𝑌𝑘 = 𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘] forms a specific type of martingale
known as the Doob martingale. Here, we aim to prove the bounded difference

inequality using bounds on martingale difference sequences.
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Background on martingales

Given a probability space (Ω,ℱ , 𝑃), a nested sequence of sub 𝜎-fields ofℱ is called

a filtration, meaning ℱ𝑘 ⊆ ℱ𝑘+1 for all 𝑘 ≥ 1. A sequence of random variables {𝑌𝑘}∞𝑘=1
is adapted to the filtration {ℱ𝑘}∞𝑘=1 if each 𝑌𝑘 is ℱ𝑘-measurable.

Definition 2.15 (Martingale)

Given a sequence {𝑌𝑘}∞𝑘=1 of random variables adapted to a filtration {ℱ𝑘}∞𝑘=1, the
pair {(𝑌𝑘, ℱ𝑘)}∞𝑘=1 is a martingale if, for all 𝑘 ≥ 1,

𝔼[|𝑌𝑘|] < ∞ and 𝔼[𝑌𝑘+1 ∣ ℱ𝑘] = 𝑌𝑘.

Roughly speaking, if a variable is a martingale, the best prediction of tomorrow is given

by today’s value.
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Background on martingales

Remarks.

• If the filtration is defined by another sequence of r.v.s {𝑋𝑘}∞𝑘=1 via the canonical
𝜎-fields ℱ𝑘 ≔ 𝜎(𝑋1, … , 𝑋𝑘), we say that {𝑌𝑘}∞𝑘=1 is a martingale w.r.t. {𝑋𝑘}∞𝑘=1.

• If a sequence is martingale with respect to itself (i.e. withℱ𝑘 = 𝜎(𝑌1, … , 𝑌𝑘), we
simply say that {𝑌𝑘}∞𝑘=1 forms a martingale sequence.

• In general, the notion of martingale can be defined for stochastic processes as

follows. For a filtered probability space (Ω,ℱ , {ℱ𝑡}𝑡≥0, 𝑃), an adapted process
{(𝑋𝑡, ℱ𝑡)}𝑡≥0 is a martingale if

𝔼[|𝑋𝑡|] < ∞ and 𝔼[𝑋𝑡 ∣ ℱ𝑠] = 𝑋𝑠 for all 𝑠 < 𝑡.
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Background on martingales

Another useful notion is that of martingale difference sequences.

Definition (Martingale difference sequence)

An adapted sequence {(𝐷𝑘, ℱ𝑘)}∞𝑘=1 is called a martingale difference sequence if, for all

𝑘 ≥ 1,
𝔼[|𝐷𝑘|] < ∞ and 𝔼[𝐷𝑘+1 ∣ ℱ𝑘] = 0.

• As suggested by their name, such difference sequences arise in a natural way

from martingales by defining 𝐷𝑘 = 𝑌𝑘 − 𝑌𝑘−1.
• For any martingale sequence {𝑌𝑘}𝑛𝑘=0, we have the telescoping decompositon
𝑌𝑛 − 𝑌0 = ∑

𝑛
𝑘=1𝐷𝑘, where {𝐷𝑘}𝑛𝑘=1 is a martingale difference sequence.
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Background on martingales

Example 2.17 (Doob construction)

Given a sequence of independent random variables {𝑋𝑘}𝑛𝑘=1, define the sequence
𝑌𝑘 ≔ 𝔼[𝑓(𝑋) ∣ 𝑋1, …𝑋𝑘], and suppose that 𝔼[|𝑓(𝑋)|] < ∞. We claim that {𝑌𝑘}𝑛𝑘=0 is a
martingale w.r.t. {𝑋𝑘}𝑛𝑘=1.
• Writing 𝑋𝑘

1 = (𝑋1, … , 𝑋𝑘), we indeed have

𝔼[|𝑌𝑘|] = 𝔼[|𝔼[𝑓(𝑋) ∣ 𝑋𝑘
1]|] ≤ 𝔼[|𝑓(𝑋)|] < ∞,

due to Jensen’s inequality.

• Moreover, by the tower property,

𝔼[𝑌𝑘+1 ∣ 𝑋𝑘
1] = 𝔼[𝔼[𝑓(𝑋) ∣ 𝑋𝑘+1

1 ] ∣ 𝑋𝑘
1] = 𝔼[𝑓(𝑋) ∣ 𝑋𝑘

1] = 𝑌𝑘,

and the second condition is also satisfied.

• Note that 𝐷𝑘 ≔ 𝑌𝑘 − 𝑌𝑘−1 is a martingale difference sequence.
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Concentration bounds for martingale difference
sequences
We begin by stating and proving a general Bernstein-type bound for a martingale difference

sequence, which can be used to bound the quantity 𝑌𝑛 − 𝑌0, or the sum ∑𝑛
𝑘=1𝐷𝑘 itself.

Theorem 2.19

Let {(𝐷𝑘, ℱ𝑘)}∞𝑘=1 be a martingale difference sequence, and suppose that
𝔼[𝑒𝜆𝐷𝑘 ∣ ℱ𝑘−1] ≤ 𝑒𝜆

2𝜈2𝑘/2 almost surely for any |𝜆| < 1/𝛼𝑘.Then the following hold:

(a) The sum ∑𝑛
𝑘=1𝐷𝑘 is sub-exponential with parameters ��

∑𝑛
𝑘=1 𝜈

2
𝑘, 𝛼∗�, where

𝛼∗ = max𝑘=1,…,𝑛 𝛼𝑘.

(b) The sum satisfies the concentration inequality

𝑃 ��
𝑛
�
𝑘=1

𝐷𝑘� ≥ 𝑡� ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2𝑒
− 𝑡2

2∑𝑛
𝑘=1 𝜈

2
𝑘 if 0 ≤ 𝑡 ≤

∑𝑛
𝑘=1 𝜈

2
𝑘

𝛼∗
,

2𝑒−
𝑡

2𝛼∗ if 𝑡 >
∑𝑛

𝑘=1 𝜈
2
𝑘

𝛼∗
.

38/88



Concentration bounds for martingale difference
sequences

Proof of Thm 2.19.

For any scalar 𝜆 such that |𝜆| < 1
𝛼∗
, conditioning on ℱ𝑛−1 and applying iterated expectation

yields

𝔼[𝑒𝜆∑
𝑛
𝑘=1𝐷𝑘] = 𝔼[𝑒𝜆∑

𝑛−1
𝑘=1𝐷𝑘𝔼[𝑒𝜆𝐷𝑛 ∣ ℱ𝑛−1]]

≤ 𝔼[𝑒𝜆∑
𝑛−1
𝑘=1𝐷𝑘]𝑒𝜆2𝜈2𝑛/2,

where the inequality follows from our assumption.

Iterating this procedure yields the bound 𝔼[𝑒𝜆∑
𝑛
𝑘=1𝐷𝑘] ≤ 𝑒𝜆

2∑𝑛
𝑘=1 𝜈

2
𝑘/2, valid for all |𝜆| < 𝛼−1∗ .

The tail bound follows from applying the Bernstein bound from Prop 2.9. �
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Concentration bounds for martingale difference
sequences
Again, we need to isolate sufficient and easily checkable conditions for the

differences 𝐷𝑘 to be sub-exponential. Since bounded random variables are

sub-Gaussian, we obtain the following corollary:

Corollary 2.20 (Azuma-Hoeffding)

Let {(𝐷𝑘, ℱ𝑘)}∞𝑘=1 be a martingale difference sequence for which there are constants
{(𝑎𝑘, 𝑏𝑘)}𝑛𝑘=1 such that 𝐷𝑘 ∈ [𝑎𝑘, 𝑏𝑘] almost surely for 𝑘 = 1,… , 𝑛. Then, for all 𝑡 ≥ 0,

𝑃 ��
𝑛
�
𝑘=1

𝐷𝑘� ≥ 𝑡� ≤ 2𝑒
− 2𝑡2

∑𝑛
𝑘=1(𝑏𝑘−𝑎𝑘)

2 .

Proof Since 𝐷𝑘 ∈ [𝑎𝑘, 𝑏𝑘] a.s., the (𝐷𝑘 ∣ ℱ𝑘−1) ∈ [𝑎𝑘, 𝑏𝑘] a.s.; use a similar argument with the
sub-Gaussian parameter (𝑏𝑘 − 𝑎𝑘)/2 and the Hoeffding bound.
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Concentration bounds for martingale difference
sequences

A key application of Cor 2.20 concerns functions with the following property:

Definition (Bounded difference property)

Given vectors 𝑥, 𝑥′ ∈ ℝ𝑛 and an index 𝑘 ∈ {1, … , 𝑛}, define a new vector 𝑥\𝑘 ∈ ℝ𝑛 via

𝑥\𝑘𝑗 ≔
⎧⎪⎨
⎪⎩
𝑥𝑗 if 𝑗 ≠ 𝑘,
𝑥′𝑘 if 𝑗 = 𝑘.

We say that 𝑓 ∶ ℝ𝑛 → ℝ satisfies the bounded difference propertywith parameters

(𝐿1, … , 𝐿𝑛) if, for all 𝑘 = 1,… , 𝑛,

|𝑓(𝑥) − 𝑓(𝑥\𝑘)| ≤ 𝐿𝑘 for all 𝑥, 𝑥′ ∈ ℝ𝑛.
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Concentration bounds for martingale difference
sequences

Corollay 2.21 (Bounded difference inequality;McDiarmid’s inequality)

Suppose that 𝑓 satisfies the bounded difference property with parameters
(𝐿1, … , 𝐿𝑛) and the random vector 𝑋 = (𝑋1, … , 𝑋𝑛) has independent compoments.
Then,

𝑃(|𝑓(𝑋) − 𝔼[𝑓(𝑋)]| ≥ 𝑡) ≤ 2𝑒
− 2𝑡2

∑𝑛
𝑘=1 𝐿

2
𝑘 for all 𝑡 ≥ 0.

Remark. In the special case when 𝑓 is 𝐿-Lipschitz w.r.t. the Hamming norm defined via the

metric 𝑑𝐻(𝑥, 𝑦) = ∑
𝑛
𝑖=1 1(𝑥𝑖 ≠ 𝑦𝑖) for 𝑥, 𝑦 ∈ ℝ𝑛, we obtain

𝑃(|𝑓(𝑋) − 𝔼[𝑓(𝑋)]| ≥ 𝑡) ≤ 2𝑒−
2𝑡2

𝑛𝐿2 for all 𝑡 ≥ 0.
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Concentration bounds for martingale difference
sequences

Proof of Cor 2.21.

Recall the Doob martingale and its associated martingale difference sequence

𝐷𝑘 = 𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘] − 𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘−1].

We claim that 𝐷𝑘 lies in an interval of length at most 𝐿𝑘 almost surely. Define the random
variables

𝐴𝑘 ≔ inf
𝑥
𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘−1, 𝑥] − 𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘−1],

𝐵𝑘 ≔ sup
𝑥

𝔼[𝑓(𝑋)|𝑋1, … , 𝑋𝑘−1, 𝑥] − 𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘−1].

By definition, 𝐷𝑘 − 𝐴𝑘 = 𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘] − inf𝑥 𝔼[𝑓(𝑋) ∣ 𝑋1, … , 𝑋𝑘−1, 𝑥], so 𝐷𝑘 ≥ 𝐴𝑘 a.s.,
and similarly, 𝐷𝑘 ≤ 𝐵𝑘 a.s..
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Concentration bounds for martingale difference
sequences

Proof of Cor 2.21. (continued)

Observe that by the independence of 𝑋𝑘, we have

𝔼[𝑓(𝑋) ∣ 𝑥1, … , 𝑥𝑘] = 𝔼𝑘+1[𝑓(𝑥1, … , 𝑥𝑘, 𝑋𝑘+1, … , 𝑋𝑛)] for all (𝑥1, … , 𝑥𝑘),

where 𝔼𝑘+1 denotes the expectation over (𝑋𝑘+1, … , 𝑋𝑛). Consequently, we have

𝐵𝑘 − 𝐴𝑘 = sup
𝑥
𝔼𝑘+1[𝑓(𝑋1, … , 𝑋𝑘−1, 𝑥, 𝑋𝑘+1, … , 𝑋𝑛)] − inf

𝑥
𝔼𝑘+1[𝑓(𝑋1, … , 𝑋𝑘−1, 𝑥, 𝑋𝑘+1, … , 𝑋𝑛)]

≤ 𝑠𝑢𝑝𝑥,𝑦|𝔼𝑘+1[𝑓(𝑋1, … , 𝑋𝑘−1, 𝑥, 𝑋𝑘+1, … , 𝑋𝑛)] − 𝔼𝑘+1[𝑓(𝑋1, … , 𝑋𝑘−1, 𝑦, 𝑋𝑘+1, … , 𝑋𝑛)]|
≤ 𝐿𝑘,

so we obtain the desired result as a corollary of the Azuma-Hoeffding inequality.
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Concentration bounds for martingale difference
sequences

Example 2.23 (U-statistics)

Let 𝑔 ∶ ℝ2 → ℝ be a symmetric function of its arguments. Given an i.i.d. sequence 𝑋𝑘, 𝑘 ≥ 1,
of random variables, the quantity

𝑈 ≔
1
�𝑛2�

�
𝑗<𝑘
𝑔(𝑋𝑗, 𝑋𝑘)

is known as a pairwise U-statistic.

• For instance, if 𝑔(𝑠, 𝑡) = |𝑠 − 𝑡|, then 𝑈 is an unbiased estimator of the mean absolute

pairwise deviation 𝔼[|𝑋1 − 𝑋2|].
• Other examples of the U-statistic include the Mann-Whitney U-statistic and Kendall’s

tau.

• Note that 𝑈 is not a sum of independent r.v.s, although the dependence is relatively

weak.
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Concentration bounds for martingale difference
sequences

Example 2.23 (U-statistics; continued)

• Suppose 𝑔 is 𝑏-uniformly bounded, so that ||𝑏||∞ < ∞.

• Viewing 𝑈 as a function 𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛), for any given coordinate 𝑘, we have

|𝑓(𝑥) − 𝑓(𝑥\𝑘)| ≤
1
�𝑛2�

�
𝑗≠𝑘
|𝑔(𝑥𝑗, 𝑥𝑘) − 𝑔(𝑥𝑗, 𝑥′𝑘)|

≤
(𝑛 − 1)(2𝑏)

�𝑛2�
=
4𝑏
𝑛
,

so that the bounded differences property holds with 𝐿𝑘 =
4𝑏
𝑛
in each coordinate.

• Therefore, by Cor 2.21, we obtain

𝑃(|𝑈 − 𝔼[𝑈]| ≥ 𝑡) ≤ 2𝑒−
𝑛𝑡2

8𝑏2 .
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Lipschitz functions of Gaussian variables

Another useful bound can be derived for Lipschitz functions of Gaussian random

variables.

Definition (𝐿-Lipschitz function)

We say that a function 𝑓 ∶ ℝ𝑛 → ℝ is 𝐿-Lipschitz with respect to the Euclidean
norm || ⋅ ||2 if

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿||𝑥 − 𝑦||2 for all 𝑥, 𝑦 ∈ ℝ𝑛.
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Lipschitz functions of Gaussian variables

The following result guarantees that any 𝐿-Lipschitz function of i.i.d. standard
Gaussian variables is sub-Gaussian with parameter at most 𝐿, regardless of the
dimension 𝑛.

Theorem 2.26

Let (𝑋1, … , 𝑋𝑛) be a vector of i.i.d. standard Gaussian variables, and let 𝑓 ∶ ℝ𝑛 → ℝ
be 𝐿-Lipschitz w.r.t. the Euclidean norm. Then the variable 𝑓(𝑋) − 𝔼[𝑓(𝑋)] is
sub-Gaussian with parameter at most 𝐿, and hence

𝑃(|𝑓(𝑋) − 𝔼[𝑓(𝑋)]| ≥ 𝑡) ≤ 2𝑒−
𝑡2

2𝐿2 for all 𝑡 ≥ 0.
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Lipschitz functions of Gaussian variables

Remarks.

• Roughly speaking, 𝑓(𝑋) behaves like a scalar Gaussian variable with variance 𝐿2.
• While we omit the proof of Thm 2.26, it relies on properties specific to the

standard Gaussian distribution.

• Hence, the dimension-free concentration of Lipschitz functions need not hold

for sub-Gaussian distributions in generalwithout additional assumptions such as

convexity.

• However, similar concentration results do hold for other non-Gaussian

distributions, including the uniform distribution on the sphere and strictly

log-concave distributions.
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Lipschitz functions of Gaussian variables

Thm 2.26 is useful for a broad range of problems. Although we do not know the

explicit value of 𝔼[𝑓(𝑋)], we can still obtain some strong concentration bounds:

Example 2.29 (Order statistics)

Given a random vector (𝑋1, … , 𝑋𝑛), consider the order statistics 𝑋(1) ≤ ⋯ ≤ 𝑋(𝑛).
• It can be shown that |𝑋(𝑘) − 𝑌(𝑘)| ≤ ||𝑋 − 𝑌||∞ ≤ ||𝑋 − 𝑌||2 for all 𝑘 = 1,… , 𝑛.
• Consequently, when 𝑋𝑖

i.i.d.∼ 𝑁(0, 1), we obtain

𝑃(|𝑋(𝑘) − 𝔼[𝑋(𝑘)]| ≥ 𝛿) ≤ 2𝑒
− 𝛿2

2 for all 𝛿 ≥ 0,

since each order statistic is 1-Lipschitz.

50/88



Lipschitz functions of Gaussian variables

Example 2.29 (Singular values of Gaussian random matrices)

For integers 𝑛 > 𝑑, let X ∈ ℝ𝑛×𝑑 be a random matrix with i.i.d. 𝑁(0, 1) entries, and denote its
singular values by

𝜎1(X) ≥ ⋯ ≥ 𝜎𝑑(X) ≥ 0.

• ByWeyl’s theorem, we have

max
𝑘=1,…,𝑑

|𝜎𝑘(X) − 𝜎𝑘(Y)| ≤ ||X −Y||2 ≤ ||X −Y||2,

where || ⋅ ||2 and || ⋅ ||𝐹 are the operator 2-norm and the Frobenius norm, respectively.

• Note that the Frobenius norm plays the role of the Euclidean norm. Consequently,

each singular value is a 1-Lipschitz function of the random matrix, and we obtain

𝑃(|𝜎𝑘(X) − 𝔼[𝜎𝑘(X)]| ≥ 𝛿) ≤ 2𝑒
− 𝛿2

2 for all 𝛿 ≥ 0.
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Motivation

• In the previous chapter, we discussed concentration inequalities that allow us

to bound quantities of the form | 1𝑛 ∑
𝑛
𝑖=1 𝑓(𝑋𝑖) − 𝔼[𝑓(𝑋)]| for a fixed function 𝑓.

• In this chapter, we strengthen these results by deriving uniform bounds.

• That is, given a function class ℱ, we explore deviations of
sup𝑓∈ℱ �

1
𝑛
∑𝑛
𝑖=1 𝑓(𝑋𝑖) − 𝔼[𝑓(𝑋)]�.

• Why are uniform bounds so important? To motivate this, we briefly review two

key concepts in both classical and modern statistics: the plug-in principle and

empirical risk minimization (ERM).
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The plug-in principle

• In statistical settings, a typical use of the empirical cdf if to construct estimators

of various quantities associated with the population cdf.

• Many such estimation problems can be formulated in terms of a functional

𝛾 ∶ 𝐹 ↦ 𝛾(𝐹), which maps a cdf 𝐹 to a real number 𝛾(𝐹).
• The plug-in principle suggests replacing the unknown 𝐹with the empirical cdf
�𝐹𝑛, thereby obtaining an estimate of 𝛾(𝐹).

Example 4.1 (Expectation functionals)

Given some integrable function 𝑔, we define the expectation functional 𝛾𝑔 via
𝛾𝑔(𝐹) ≔ ∫𝑔(𝑥) d𝐹(𝑥).
Then, the plug-in estimate of 𝔼[𝑔(𝑋)] is given by 𝛾𝑔( �𝐹𝑛) =

1
𝑛
∑𝑛
𝑖=1 𝑔(𝑋𝑖).
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The plug-in principle

A natural question arises: when does the plug-in estimator 𝛾( �𝐹𝑛) converge to 𝛾(𝐹) in
probability (or almost surely)?

• This question can be addressed in a unified manner for many functionals by

defining a notion of continuity.

• Given a pair of cdfs 𝐹 and 𝐺, we can measure the distance between 𝐹 and 𝐺
using the sup-norm ||𝐺 − 𝐹||∞ ≔ 𝑠𝑢𝑝𝑡∈ℝ|𝐺(𝑡) − 𝐹(𝑡)|.

• We say that the functional 𝛾 is continuous at 𝐹 in the sup-norm if, for all 𝜖 > 0,
there exists a 𝛿 > 0 such that

||𝐺 − 𝐹||∞ ≤ 𝛿 ⟹ |𝛾(𝐺) − 𝛾(𝐹)| ≤ 𝜖.
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The plug-in principle

• For any continuous functional, the question of consistency is now reduced to

the convergence of the random variable || �𝐹𝑛 − 𝐹||∞.
• In light of this perspective, we revisit the well-known Glivenko–Cantelli

theorem.

Theorem 4.4 (Glivenko-Cantelli)

For any distribution, the empirical cdf �𝐹𝑛 is a strongly consistent estimator of the
population cdf in the uniform norm, meaning that

|| �𝐹𝑛 − 𝐹||∞
𝑎.𝑠.→ 0.

55/88



Uniform laws for more general function classes

We now consider uniform laws in broader contexts.

Let ℱ be a class of integrable real-valued functions with domain𝒳, and let {𝑋𝑖}𝑛𝑖=1
be a collection of i.i.d. samples from some distribution 𝑃 over𝒳. Consider the

random variable

||𝑃𝑛 − 𝑃||ℱ ≔ sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
𝑓(𝑋𝑖) − 𝔼[𝑓(𝑋)]� .

Definition 4.5

We say that ℱ is a Glivenko-Cantelli class for 𝑃 if ||𝑃𝑛 − 𝑃||ℱ converges to zero in

probability as 𝑛 → ∞.

Remark. When almost sure convergence holds, we say that ℱ satisfies a strong

Glivenko-Cantelli law.
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Empirical risk minimization
Variables of the form ||𝑃𝑛 − 𝑃||ℱ are ubiquitous in statistics, especially in methods

based on empirical risk minimization.

• Consider an indexed family of probability distributions {𝑃𝜃 ∣ 𝜃 ∈ Θ}, and
suppose we are given samples 𝑋 ≔ {𝑋𝑖}𝑛𝑖=1, drawn i.i.d. according to 𝑃𝜃∗ for
some unknown 𝜃∗.

• Let 𝜃 ↦ ℒ𝜃(𝑋) be a loss function that measures the fit between parameter 𝜃
and the sample 𝑋.

• The principle of empirical risk minimization is based on the empirical risk

�𝑅𝑛(𝜃, 𝜃∗) ≔
1
𝑛

𝑛
�
𝑖=1
ℒ𝜃(𝑋𝑖).

• The empirical risk should be contrasted with the population risk

𝑅(𝜃, 𝜃∗) ≔ 𝔼𝜃∗[ℒ𝜃(𝑋)].
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Empirical risk minimization

In practice, one minimizes the empirical risk over some subset Θ0 of the full space
Θ. The statistical question is how to bound the excess risk,

𝐸(𝜃̂, 𝜃∗) ≔ 𝑅(𝜃̂, 𝜃∗) − inf
𝜃∈Θ0

𝑅(𝜃, 𝜃∗).

• For simplicity, assume that there exists some 𝜃0 ∈ Θ0 such that
𝑅(𝜃0, 𝜃∗) = inf𝜃∈Θ0 𝑅(𝜃, 𝜃

∗).
• Then, the excess risk can be decomposed as

𝐸(𝜃̂, 𝜃∗) = �𝑅(𝜃̂, 𝜃∗) − 𝑅̂𝑛(𝜃̂, 𝜃∗)������������������������������
𝑇1

+ �𝑅̂𝑛(𝜃̂, 𝜃∗) − 𝑅̂𝑛(𝜃0, 𝜃∗)��������������������������������
𝑇2≤0

+ �𝑅̂𝑛(𝜃0, 𝜃∗) − 𝑅(𝜃0, 𝜃∗)��������������������������������
𝑇3

.
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Empirical risk minimization

𝐸(𝜃̂, 𝜃∗) = �𝑅(𝜃̂, 𝜃∗) − 𝑅̂𝑛(𝜃̂, 𝜃∗)������������������������������
𝑇1

+ �𝑅̂𝑛(𝜃̂, 𝜃∗) − 𝑅̂𝑛(𝜃0, 𝜃∗)��������������������������������
𝑇2≤0

+ �𝑅̂𝑛(𝜃0, 𝜃∗) − 𝑅(𝜃0, 𝜃∗)��������������������������������
𝑇3

.

• The term 𝑇2 is non-positive by the definition of 𝜃.

• The term 𝑇3 =
1
𝑛
∑𝑛

𝑖=1ℒ𝜃0
(𝑋𝑖) − 𝔼𝑋[ℒ𝜃0

(𝑋)] can be dealt with techniques from Chapter

2, since 𝜃0 is an unknown but deterministic quantity.

• However, we need stronger results to control 𝑇1 = 𝔼𝑋[ℒ𝜃̂(𝑋)] −
1
𝑛
∑𝑛

𝑖=1ℒ𝜃̂(𝑋𝑖),
since 𝜃̂ is a random quantity depending on the sample 𝑋.

• Suppose we can control ||𝑃𝑛 − 𝑃||𝔏(Θ0) via a uniform law over the loss function class

𝔏(Θ0) ≔ {𝑥 ↦ ℒ𝜃(𝑥), 𝜃 ∈ Θ0}. Since 𝑇1 and 𝑇3 are both dominated by ||𝑃𝑛 − 𝑃||𝔏(Θ0), we
conclude that the excess risk is at most 2||𝑃𝑛 − 𝑃||𝔏(Θ0).
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Empirical risk minimization

The analysis of ERM is fundamental in statistical learning theory. Suppose we aim to

learn a target function 𝑓∗ by computing the empirical risk minimizer ̃𝑓 over a
predefined hypothesis space.

The error 𝑓∗ − ̃𝑓 can be decomposed as follows:

𝑓∗ − ̃𝑓 = 𝑓∗ − 𝑓0�������
approximation error

+ 𝑓0 − ̂𝑓�
generalization error

+ ̂𝑓 − ̃𝑓�
optimization error

,

• 𝑓0 = arg min𝑓∈ℱ𝔼[ℒ (𝑌, 𝑓(𝑋))]: Expected risk minimizing function.

• ̂𝑓 = arg min𝑓∈ℱ
1
𝑛
∑𝑛

𝑖=1ℒ(𝑌𝑖, 𝑓(𝑋𝑖)): Empirical risk minimizing function.

• ̃𝑓: Approximation of ̂𝑓 by optimization.

60/88



Empirical risk minimization

In particular, uniform bounds play an essential role in controlling the generalization

error in statistical learning.

Figure reference: https://dcn.nat.fau.eu/breaking-the-curse-of-dimensionality-with-barron-spaces/
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Rademacher complexity

• So far in our discussion of empirical risk minimization, it is natural to think that

the generalization ability in a statistical learning problem depends on the “size”

of the function class ℱ.
• Ifℱ is finite, its cardinality serves as a measure of its size. However, in many

practical scenarios, ℱ is infinite, and we need a more refined notion.

• One such notion is Rademacher complexity, which quantifies the ability of a

function class to fit random binary noise. A function class with high

Rademacher complexity is prone to overfitting, leading to poor generalization

in ERM.
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Rademacher complexity

Let ℱ be the function class of our interest. For any fixed collection 𝑥𝑛1 ≔ (𝑥1, … , 𝑥𝑛)
of points, consider the subset of ℝ𝑛 given by

ℱ (𝑥𝑛1) ≔ {(𝑓(𝑥1), … , 𝑓(𝑥𝑛)) ∣ 𝑓 ∈ ℱ },

i.e. ℱ (𝑥𝑛1) is the set of all possible realizations of applying 𝑓 to 𝑥𝑛1 ∈ ℝ𝑛.

• Ifℱ is a class of binary classifiers, then |ℱ (𝑥𝑛1)| < 2𝑛.
• Intuitively, the cardinality ofℱ (𝑥𝑛1) reflects the variability that can be captured
through ℱ, given a fixed sample.

63/88



Rademacher complexity

Definition (Rademacher complexity)

Let 𝜀𝑖 be i.i.d. Rademacher variables. Regarding the sample 𝑥𝑛1 as fixed, define the
empirical Rademacher complexity of a function class ℱ as

ℛ(ℱ (𝑥𝑛1)/𝑛) ≔ 𝔼𝜀 �sup
𝑓 ∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
𝜀𝑖𝑓(𝑥𝑖)�� .

Then, for random samples 𝑋𝑛1 ≔ {𝑋𝑖}𝑛𝑖=1, the Rademacher complexity ofℱ is given by

ℛ𝑛(ℱ ) ≔ 𝔼𝑋[ℛ (ℱ (𝑋𝑛1 )/𝑛)] = 𝔼𝑋,𝜀 �sup
𝑓 ∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
𝜀𝑖𝑓(𝑋𝑖)�� .

i.e. Rademacher complexity is the average of the maximum correlation between

(𝑓(𝑋1), … , 𝑓(𝑋𝑛)) and the “noise” vector (𝜀1, … , 𝜀𝑛).
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Rademacher complexity

The following theorem presents a fundamental result, providing a connection

between Rademacher complexity and the Glivenko-Cantelli property for uniformly

bounded function classes.

Theorem 4.10

Let ℱ be 𝑏-uniformly bounded, meaning that ||𝑓||∞ ≤ 𝑏 for all 𝑓 ∈ ℱ. Then, for any
𝑛 ≥ 1 and 𝛿 ≥ 0, we have

||𝑃𝑛 − 𝑃||ℱ ≤ 2ℛ𝑛(ℱ ) + 𝛿

with 𝑃-probability at least 1 − exp �𝑛𝛿
2

2𝑏2
�.

Consequently, as long asℛ𝑛(ℱ ) = 𝑜(1), we have ||𝑃𝑛 − 𝑃||ℱ
a.s.→ 0.
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Rademacher complexity

Proof of Thm 4.10.

Step 1. Concentration around mean

First, we claim that ‖𝑃𝑛 − 𝑃‖ℱ − 𝔼[‖𝑃𝑛 − 𝑃‖ℱ] ≤ 𝑡 with 𝑃-probability at least 1 − exp �− 𝑛𝑡2

2𝑏2
�.

For notational convenience, define the recentered functions ̄𝑓(𝑥) ∶= 𝑓(𝑥) − 𝔼[𝑓(𝑋)], and
write ‖𝑃𝑛 − 𝑃‖ℱ = sup𝑓∈ℱ �

1
𝑛
∑𝑛

𝑖=1
̄𝑓(𝑋𝑖)�.

Now, regarding the samples as fixed, consider the following function

𝐺(𝑥1, … , 𝑥𝑛) ∶= sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=1

̄𝑓(𝑥𝑖)� .
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Rademacher complexity

Proof of Thm 4.10. (continued)

We claim that 𝐺 satisfies the bounded differences property with a uniform constant 2𝑏/𝑛.
Since 𝐺 is invariant to permutations of 𝑥𝑖’s, it suffices to bound |𝐺(𝑥) − 𝐺(𝑦)| when the first
coordinate 𝑥1 is perturbed.

For any function ̄𝑓 = 𝑓 − 𝔼[𝑓], we have

�
1
𝑛

𝑛
�
𝑖=1

̄𝑓(𝑥𝑖)� − sup
ℎ∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
ℎ̄(𝑦𝑖)� ≤ �

1
𝑛

𝑛
�
𝑖=1

̄𝑓(𝑥𝑖) −
1
𝑛

𝑛
�
𝑖=1

̄𝑓(𝑦𝑖)�

≤
1
𝑛
| ̄𝑓(𝑥1) − ̄𝑓(𝑦1)|

≤
2𝑏
𝑛
.

Taking the supremum on both sides, we obtain 𝐺(𝑥) − 𝐺(𝑦) ≤ 2𝑏/𝑛, and thus
|𝐺(𝑥) − 𝐺(𝑦)| ≤ 2𝑏/𝑛 by symmetry. Therefore, we obtain the desired result using the bounded
differences inequality (Prop 2.21).
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Rademacher complexity

Proof of Thm 4.10. (continued)

Step 2. Upper bound on mean

Now, it remains to prove 𝔼[||𝑃𝑛 − 𝑃||ℱ] ≤ 2ℛ𝑛(ℱ ).

Letting (𝑌1, … , 𝑌𝑛) be a second i.i.d. sequence independent of (𝑋1, … , 𝑋𝑛), we use a
symmetrization argument as follows:

𝔼 [‖𝑃𝑛 − 𝑃‖ℱ] = 𝔼𝑋 �sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
{𝑓(𝑋𝑖) − 𝔼𝑌[𝑓(𝑌𝑖)]}��

= 𝔼𝑋 �sup
𝑓∈ℱ

�𝔼𝑌 �
1
𝑛

𝑛
�
𝑖=1
{𝑓(𝑋𝑖) − 𝑓(𝑌𝑖)}���

≤ 𝔼𝑋,𝑌 �sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
{𝑓(𝑋𝑖) − 𝑓(𝑌𝑖)}�� .
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Rademacher complexity

Proof of Thm 4.10. (continued)

Let (𝜀1, … , 𝜀𝑛) be an i.i.d. sequence of Rademacher variables, independent of 𝑋 and 𝑌.

Then, 𝜀𝑖(𝑓(𝑋𝑖) − 𝑓(𝑌𝑖))
𝑑= 𝑓(𝑋𝑖) − 𝑓(𝑌𝑖), yielding

𝔼𝑋,𝑌 �sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
{𝑓(𝑋𝑖) − 𝑓(𝑌𝑖)}�� = 𝔼𝑋,𝑌,𝜀 �sup

𝑓∈ℱ
�
1
𝑛

𝑛
�
𝑖=1
𝜀𝑖(𝑓(𝑋𝑖) − 𝑓(𝑌𝑖))��

≤ 2𝔼𝑋,𝜀 �sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
𝜀𝑖𝑓(𝑋𝑖)�� = 2ℛ𝑛(ℱ ).

Combining Steps 1 & 2 gives the desired result. �
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Necessary conditions with Rademacher complexity

• In the proof of Thm 4.10, we used the symmetrization technique, relating the

random variable ||𝑃𝑛 − 𝑃||ℱ to its symmetrized version

||𝑆𝑛||ℱ ≔ sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=−1

𝜀𝑖𝑓(𝑋𝑖)� .

• Note that the expectation of ||𝑆𝑛||ℱ is the Rademacher complexity ofℱ.
• Nonetheless, one may wonder whether much was lost in bounding ||𝑃𝑛 − 𝑃||ℱ
with ||𝑆𝑛||ℱ. Thus, it is worthwhile to explore the relationship between these
two quantities.
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Necessary conditions with Rademacher complexity

The following “sandwich” result provides valuable insight:

Proposition 4.11

For any convex non-decreasing function Φ ∶ ℝ → ℝ, we have

𝔼𝑋,𝜀 �Φ �
1
2
||𝑆𝑛|| ̄ℱ�� ≤ 𝔼𝑋[Φ(||𝑃𝑛 − 𝑃||ℱ)] ≤ 𝔼𝑋,𝜀 [Φ (2||𝑆𝑛||ℱ)] ,

where ̄ℱ ≔ {𝑓 − 𝔼[𝑓], 𝑓 ∈ ℱ } is the recentered function class.

In particular, when applied with Φ(𝑡) = 𝑡, we obtain

1
2
𝔼𝑋,𝜀 �||𝑆𝑛|| ̄ℱ� ≤ 𝔼𝑋[||𝑃𝑛 − 𝑃||ℱ] ≤ 2𝔼𝑋,𝜀 [||𝑆𝑛||ℱ] .
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Necessary conditions with Rademacher complexity
A consequence of Prop 4.11 is that ||𝑃𝑛 − 𝑃||ℱ can also be bounded from below

using the Rademacher complexity.

Proposition 4.12

For any 𝑏-uniformly bounded function class ℱ, and any 𝑛 ≥ 1, 𝛿 ≥ 0, we have

||𝑃𝑛 − 𝑃||ℱ ≥
1
2
ℛ𝑛(ℱ ) −

sup𝑓∈ℱ |𝔼[𝑓]|

2√𝑛
− 𝛿

with 𝑃-probability at least 1 − exp �𝑛𝛿
2

2𝑏2
�.

• As a result, if the Rademacher complexityℛ𝑛(ℱ ) remains bounded away from zero,

then ||𝑃𝑛 − 𝑃||ℱ cannot converge to zero in probability.

• Thus, for a uniformly bounded function class, the Rademacher complexity provides a

necessary and sufficient condition for it to be Glivenko-Cantelli.
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Upper bounds on the Rademacher complexity

• We end this chapter with a few elementary techniques for bounding the

Rademacher complexity, particularly those applicable to function classes with

polynomial discrimination.

• We also explore the related notion of Vapnik-Chervonenkis (VC) dimension and

their properties.

• More advanced techniques are addressed in Chapter 5, including those

involving metric entropy and chaining arguments.
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Classes with polynomial discrimination

Recall that, by definition, the cardinality ofℱ (𝑥𝑛1) provides a sample-dependent
measure of the complexity ofℱ.
• Ifℱ is a class of classifiers (or binary-valued functions), then |ℱ (𝑥𝑛1)| ≤ 2𝑛.
• We are interested in classes for which |ℱ (𝑥𝑛1)| grows polynomiallywith 𝑛.

Definition 4.13 (Polynomial discrimination)

A class ℱ of functions with domain𝒳 has polynomial discrimination of order 𝜈 ≥ 1 if,
each positive integer 𝑛 and collection 𝑥𝑛1 of 𝑛 points in𝒳, the set ℱ (𝑥𝑛1)has
cardinality upper bounded as

|ℱ (𝑥𝑛1)| ≤ (𝑛 + 1)𝜈.
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Classes with polynomial discrimination

The polynomial discrimination property provides a straightforward approch to

controlling the VC dimension:

Lemma 4.14

Suppose that ℱ has polynomial discrimination of order 𝜈. Then for all positive
integers 𝑛 and any collection of points 𝑥𝑛1 = (𝑥1, … , 𝑥𝑛),

ℛ(ℱ (𝑥𝑛1)/𝑛) = 𝔼𝜀 �sup
𝑓∈ℱ

�
1
𝑛

𝑛
�
𝑖=1
𝜀𝑖𝑓(𝑥𝑖)�� ≤ 4𝐷(𝑥𝑛1)�

𝜈 log(𝑛 + 1)
𝑛

,

where 𝐷(𝑥𝑛1) ≔ sup𝑓∈ℱ�
∑𝑛
𝑖=1 𝑓

2(𝑥𝑖)
𝑛 is the ℓ2-radius of the set ℱ (𝑥𝑛1)/√𝑛.
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Classes with polynomial discrimination

Remarks.

• Note that Lemma 4.14 bounds the empirical Rademacher complexity.

• However, in the special case whereℱ is 𝑏-uniformly bounded so that 𝐷(𝑥𝑛1) ≤ 𝑏
for all samples, we obtain

ℛ𝑛(ℱ ) ≤ 4𝑏
�
𝜈 log(𝑛 + 1)

𝑛
for all 𝑛 ≥ 1. (5)

Combined with Thm 4.10, this implies that any bounded function class with

polynomial discrimination is Glivenko–Cantelli.

• One such instance is the class of indicator functionswith polynomial

discrimination, which are uniformly bounded by 𝑏 = 1.
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Classes with polynomial discrimination

With new tools in hand, we revisit the classical Glivenko-Cantelli theorem from a

more quantitative perspective.

Corollary 4.15 (Classical Glivenko-Cantelli)

Let 𝐹(𝑡) = 𝑃(𝑋 ≤ 𝑡) be the cdf of a random variable 𝑋, and let �𝐹𝑛 be the empirical cdf
based on 𝑛 i.i.d. samples 𝑋𝑖 ∼ 𝑃. Then,

𝑃
⎛
⎜⎜⎜⎜⎝|| �𝐹𝑛 − 𝐹||∞ ≥ 8

�
log(𝑛 + 1)

𝑛
+ 𝛿

⎞
⎟⎟⎟⎟⎠ ≤ 𝑒

− 𝑛𝛿2
2 for all 𝛿 ≥ 0,

and hence || �𝐹𝑛 − 𝐹||∞
𝑎.𝑠.→ 0.

Remark. The sharpest bound is given by 𝑃(|| �𝐹𝑛 − 𝐹||∞ ≥ 𝛿) ≤ 2𝑒−2𝑛𝛿2 , due to Massart (1990).
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Classes with polynomial discrimination

Proof of Cor 4.15.

For a given sample 𝑥𝑛1 , consider the set ℱ (𝑥𝑛1), where ℱ is the set of all indicator functions

of the half-intervals (−∞, 𝑡] for 𝑡 ∈ ℝ.

Reordering the samples as 𝑥(1) ≤ ⋯ ≤ 𝑥(𝑛), the real line is split into at most 𝑛 + 1 pieces.

Thus, for any sample 𝑥𝑛1 , we have |ℱ (𝑥𝑛1)| ≤ 𝑛 + 1. Applying the inequality from (5) with 𝑏 = 1

and 𝜈 = 1, we obtainℛ𝑛(ℱ ) ≤ 4�
log(𝑛+1)

𝑛
.

The claim then follows from Thm 4.10. �
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Vapnik-Chervonenkis dimension

The theory of Vapnik–Chervonenkis (VC) dimension provides a more efficient means

of verifying the polynomial discrimination property for a function class.

We focus on function classes ℱ consisting of {0, 1} binary-valued functions, i.e.,
indicator functions. We begin by defining the concept of shattering.

Definition 4.16 (Shattering and VC dimension)

Given a class ℱ of binary-valued functions, we say that the set 𝑥𝑛1 = (𝑥1, … , 𝑥𝑛) is
shattered byℱ if |ℱ (𝑥𝑛1)| = 2𝑛.

The VC dimension 𝜈(ℱ ) is the largest integer 𝑛 for which there is some collection

𝑥𝑛1 = (𝑥1, … , 𝑥𝑛) of 𝑛 points that is shattered byℱ. When 𝜈(ℱ ) is finite, the function
class ℱ is said to be a VC class.
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Vapnik-Chervonenkis dimension

Remarks.

• Note that there is a 1-1 correspondence between a class of sets𝒮 and its

corresponding class of indicator functions ℱ. Accordingly, we use the
notations𝒮 (𝑥𝑛1) and 𝜈(𝑆).

• For a given set class𝒮, the shatter coefficient of order 𝑛 is defined as

𝑠(𝒮 , 𝑛) ≔ max
(𝑥1,…,𝑥𝑛)

|𝒮 (𝑥𝑛1)|.

Thus, 𝑥𝑛1 is shattered by𝒮 if 𝑠(𝒮 , 𝑛) = 2𝑛.
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Vapnik-Chervonenkis dimension

Example 4.17 (Intervals in ℝ)

First, consider the class of all indicator functions for left-sided half-intervals on ℝ,
namely𝒮left ≔ {(∞, 𝑎] ∣ 𝑎 ∈ ℝ}.

• It is implicit in the proof of Cor 4.15 that 𝜈(𝒮left) = 1:
• Any singleton set 𝑥1 can be picked out by𝒮left.

• However, for any 𝑥1 < 𝑥2, it is impossible to find a left-sided interval that contains
𝑥2 but not 𝑥1.

• Indeed, we have shown more specifically that |𝒮left| ≤ 𝑛 + 1.
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Vapnik-Chervonenkis dimension

Example 4.17 (Intervals in ℝ; continued)

Now, consider the class of all two-sided intervals on ℝ, namely
𝒮two ≔ {(𝑏, 𝑎] ∣ 𝑎, 𝑏 ∈ ℝ s.t. 𝑏 < 𝑎}.

• It is easy to verify that 𝜈(𝒮two) = 2:
• Any two-point set can be shattered by𝒮two.

• However, given three distinct points 𝑥1 < 𝑥2 < 𝑥3,𝒮two cannot pick out the

subset {𝑥1, 𝑥3}.
• Moreover, by an argument similar to Cor 4.15, we can obtain a crude bound

|𝒮two| ≤ (𝑛 + 1)2.
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Vapnik-Chervonenkis dimension

The previous example showed two function classes with finite VC dimension, both

of which also had polynomial discrimination. Is this merely a coincidence?

In fact, any finite VC class has polynomial discrimination with degree at most the VC

dimension:

Proposition 4.18 (Vapnik-Chervonenkis, Sauer and Shelah)

Consider a set class𝒮with 𝜈(𝒮 ) < ∞. Then, for any collection of points

𝑥𝑛1 = (𝑥1, … , 𝑥𝑛)with 𝑛 > 𝜈(𝒮 ), we have

|𝒮 (𝑥𝑛1)| ≤
𝜈(𝒮 )
�
𝑖=0

�
𝑛
𝑖 �
≤ �

𝑒𝑛
𝜈(𝒮 )�

𝜈(𝒮 )

.

In particular, we have |𝒮 (𝑥𝑛1)| ≤ (𝑛 + 1)𝜈(𝒮 ) for 𝑛 > 𝜈(𝒮 ).
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Controlling the VC dimension

Since classes with finite VC dimension have polynomial discrimination, it is of

interest to develop techniques for controlling the VC dimension.

To begin with, the property of having a finite VC dimension is preserved under a

number of basic operations:

Proposition 4.19

Let𝒮 and 𝒯 be set classes, each with finite VC dimensions. Then the following set

classes are also of finite VC dimension:

(a) The set class𝒮 𝑐 ≔ {𝑆𝑐 ∣ 𝑆 ∈ 𝒮 }.
(b) The set class𝒮 ⊔𝒯 ≔ {𝑆 ∪ 𝑇 ∣ 𝑆 ∈ 𝒮 ,𝑇 ∈ 𝒯 }.
(c) The set class𝒮 ⊓𝒯 ≔ {𝑆 ∩ 𝑇 ∣ 𝑆 ∈ 𝒮 ,𝑇 ∈ 𝒯 }.
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Controlling the VC dimension

For any real-valued function 𝑔 ∶ 𝒳 → ℝ, define its subgraph at level zero by the
subset 𝑆𝑔 ≔ {𝑥 ∈ 𝒳 ∣ 𝑔(𝑥) ≤ 0}. Analogously, for a function class 𝒢, we obtain the
subgraph class𝒮 (𝒢 ) ≔ {𝑆𝑔 ∣ 𝑔 ∈ 𝒢 }.

In many cases, the function class 𝒢 has a vector space structure. The following

proposition allows us to upper bound the VC dimension of the associated set class

𝒮 (𝒢 ).

Proposition 4.20 (Finite-dimensional vector spaces)

Let 𝒢 be a vector space of functions 𝑔 ∶ ℝ𝑑 → ℝ with dimension dim(𝒢 ) < ∞. Then

the subgraph class𝒮 (𝒢 ) has VC dimension at most dim(𝒢 ).
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Controlling the VC dimension

We demonstrate the use of Prop 4.20 through several examples:

Example 4.21 (Linear functions in ℝ𝑑 and half-spaces)

• For a pair (𝑎, 𝑏) ∈ ℝ𝑑 × ℝ, define the linear function 𝑓𝑎,𝑏(𝑥) ≔ ⟨𝑎, 𝑥⟩ + 𝑏, and
consider the familyℒ 𝑑 ≔ {𝑓𝑎,𝑏 ∣ (𝑎, 𝑏) ∈ ℝ𝑑 × ℝ}.

• The associated subgraph class corresponds to the collection of all half-spaces

of the form 𝐻𝑎,𝑏 ≔ {𝑥 ∈ ℝ𝑑 ∣ ⟨𝑎, 𝑥⟩ + 𝑏 ≤ 0}.
• Sinceℒ 𝑑 is a vector space of dimension 𝑑 + 1, it follows that𝒮 (ℒ 𝑑) has VC
dimension at most 𝑑 + 1.

Remark. In general, it can be shown that the VC dimension of𝒮 (ℒ 𝑑) is 𝑑 + 1 for all
dimensions.
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Controlling the VC dimension

Example 4.22 (Spheres in ℝ𝑑)

• Consider the sphere 𝑆𝑎,𝑏 ∶= {𝑥 ∈ ℝ𝑑 ∣ ‖𝑥 − 𝑎‖2 ≤ 𝑏}, where (𝑎, 𝑏) ∈ ℝ𝑑 × ℝ+
specify its center and radius, respectively, and let𝒮 𝑑

sphere denote the collection

of all such spheres.

• If we define the function

𝑓𝑎,𝑏(𝑥) ∶= ‖𝑥‖22 − 2
𝑑
�
𝑗=1
𝑎𝑗𝑥𝑗 + ‖𝑎‖22 − 𝑏2,

then we have 𝑆𝑎,𝑏 = {𝑥 ∈ ℝ𝑑 ∣ 𝑓𝑎,𝑏(𝑥) ≤ 0}, so that the sphere 𝑆𝑎,𝑏 is a subgraph
of the function 𝑓𝑎,𝑏.
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Controlling the VC dimension

Example 4.22 (Spheres in ℝ𝑑; continued)

• Define a feature map 𝜙 ∶ ℝ𝑑 → ℝ𝑑+2 via 𝜙(𝑥) ∶= (1, 𝑥1, … , 𝑥𝑑, ‖𝑥‖22), and consider
functions of the form 𝑔𝑐(𝑥) ∶= ⟨𝑐, 𝜙(𝑥)⟩, where 𝑐 ∈ ℝ𝑑+2.

• The family of functions {𝑔𝑐, 𝑐 ∈ ℝ𝑑+2} is a vector space of dimension 𝑑 + 2, and it
contains the function class {𝑓𝑎,𝑏, (𝑎, 𝑏) ∈ ℝ𝑑 × ℝ+}.

• Consequently, the VC dimension of𝒮 𝑑
sphere is at most 𝑑 + 2.

Remark. While this bound is adequate for many cases, it can be further sharpened to 𝑑 + 1.
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