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From Markov to Chernoff

In many settings, we are interested in whether a random variable is close to its mean
or median.

® Deviation inequalities (tail bounds): P(X — u > t)
¢ Concentration inequalities: P(|X — u| > t)

Two classical inequalities form the foundation for bounding tail probabilities:
¢ Markov’s inequality: Controlling the moments.
e Chernoff bound: Controlling the mgf.
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From Markov to Chernoff

Proposition (Markov's inequality)

For a non-negative random variable X with finite mean,

E[X
P(X>t) < % forall t > 0.

® |f X has a central moment of order k, the following is a direct corollary:

_ ok
]E[IX—kM] forall t > 0. (1)

P(X-pl2t) <

e Setting k = 2 yields the well-known Chebyshev’s inequality.
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From Markov to Chernoff

Proposition (Chernoff bound)
For a random variable X with an mgf ¢(1) = E[¢**-¥] defined on |A| < b,

PX-pu>t)< inf e M E[MX-M]. 2
( U= )_Aéﬁ),b]e [e ] (2)

Proof. From Markov's inequality,

A(X—p1)
P(X —u > 1) = Pe"X W > M) < %.

o7
Optimize the choice of A to obtain the tightest result. Remark. The moment bound (1) with

an optimal choice of k is never worse than the Chernoff bound (2).
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Tail behavior of random variables

Consequently, it is natural to classify random variables in terms of their mgfs, or
more intuitively, the lightness of their tails.

(i) Sub-Gaussian variables
® Eventually dominated by a Gaussian variable.
® The exponent term in the tail probabilities scales quadratically.

(ii) Sub-exponential variables
® Tails are heavier than sub-Gaussians - eventually the exponent term in the tail
probabilities scales linearly.

® Avariable is sub-exponential if and only if its mgf exists in a neighborhood
around zero.
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Tail behavior of random variables
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Figure reference: Chu et al. (2020), A High-Resolution and Low-Frequency Acoustic Beamforming Based on

Bayesian Inference and Non-Synchronous Measurements.
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Sub-Gaussian variables and Hoeffding bounds

Definition 2.2 (Sub-Gaussianity)

Arandom variable X with mean u = E[X] is sub-Gaussian if there is a positive
number ¢ such that
E[e"X-#] < 42 forall A € R.

® The constant ¢ is referred to as the sub-Gaussian parameter.

2

e Any Gaussian variable with variance o< is sub-Gaussian with parameter o.
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Sub-Gaussian variables and Hoeffding bounds
The following proposition characterizes the tail behavior of sub-Gaussians:

Proposition (Sub-Gaussian tail bound)
If X is sub-Gaussian with parameter g, it satisfies the upper deviation inequality
,2
PX-u>t)<e 22 forallt>0.
Proof. Applying the Chernoff bound, P(X — u > t) < inf) g e E[e** 1] = ¢ 22,

Since X is sub-Gaussian if and only if —X is sub-Gaussian, any sub-Gaussian variable
satisfies the concentration inequality

2

P(X-pul>t) <2 22 forallteR.
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Sub-Gaussian variables and Hoeffding bounds

Example 2.3 (Rademacher variables)

A Rademacher random variable ¢ takes the values {-1, +1} equiprobably. We claim that it is
sub-Gaussian with parameter o = 1.

Using the power-series expansion for the exponential, we obtain

1 1 (& QAF
Ele*] = 5" +e) = 5 {2 ( k!) +Y, F}

k=0 k=0

i AZk
=RVl

00 A2k
§1+k§_:1%

2
=72,
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Sub-Gaussian variables and Hoeffding bounds

Example 2.4 (Bounded random variables)
Let X be zero-mean, and supported on some interval [a, b]. Letting X’ be an independent
copy, for any A € R, we have

Ex[e'X] = Ex[e*XBrPXD] < Ey x [e/*7X),

where the last inequality follows from the convexity of the exponential.

Letting ¢ be an independent Rademacher variable, note that the distribution of X — X’ is the
same as that of ¢(X — X’), so that we have

, , AZ(X—X’)Z
Ey x[e*®X)] = Ex 5/ [E [ XX <Exxle™ 2 ],

with the inequality following from the previous example.
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Sub-Gaussian variables and Hoeffding bounds

Example 2.4 (Bounded random variables; continued)

Since | X — X’| < b — a, we are guaranteed that

22(X-X")2 22(b-a)?

HE)Q}(/[E 2 ] <e 2 ,

and hence X is sub-Gaussian with parameter at most o = b — a.

Remarks.

® The proof technique is a simple example of a symmetrization argument - we introduce
an independent copy X’, and symmetrize the problem using an independent
Rademacher variable.

b-a

® The sub-Gaussian parameter can be further sharpened to o = -
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Sub-Gaussian variables and Hoeffding bounds

Just as the property of Gaussianity is preserved by linear operations, so is the
property of sub-Gaussianity.

e |f X; and X, are independent sub-Gaussians with parameters ¢; and o,, then
X1 + X is sub-Gaussian with parameter /o1 + 05.

e Consequently, we obtain an important result, known as the Hoeffding bound.

Proposition 2.5 (Hoeffding bound)

Suppose that the variables X;,i =1, ..., n, are independent, and X; has mean y; and
sub-Gaussian parameter g;. Then, for all t > 0, we have

n 2
P (E(Xl - [/lz) > t) < exp (—#) °

i=1 i=19i
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Sub-Gaussian variables and Hoeffding bounds

Remark.

The Hoeffding bound is often stated only for the special case of bounded random
variables. If X; € [a,b] foralli =1, ..., n, it is sub-Gaussian with parameter ¢ = b%” SO
that we obtain the bound

n 242
P(Z(Xl - [Jl) > t) < exp (—m) .

i=1

We conclude the discussion on sub-Gaussianity with equivalent characterizations
of sub-Gaussian variables.
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Sub-Gaussian variables and Hoeffding bounds

Theorem 2.6 (Equivalent characterizations of sub-Gaussian variables)

Given any zero-mean random variable X, the following properties are equivalent:
(i) Thereis a constant o > 0 such that
2252
E[e*X]<e 2z forallA e R.
(i) There is a constant ¢ > 0 and Gaussian variable Z ~ N(0, t%) such that
P(X|>s) <cP(Z] =s) foralls>D0.
(iii) There is a constant 0 > 0 such that

2k)!
E[X*] < % 0% forallk=1,2,...

(iv) Thereis a constant o > 0 such that

S
E([e2? | < forall A € [0,1).
1-A
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Sub-exponential variables and Bernstein bounds

Sometimes, the notion of sub-Gaussianity is too restrictive; sub-exponentiality
offers a more relaxed condition.
Definition 2.7 (Sub-exponentiality)

A random variable X with mean u — [E[X] is sub-exponential if there are
non-negative parameters (v, @) such that

1/2/12 1
E[e*XW]<e 2 forall |A] < —.
04

® Here, we have two separate parameters, v (corresponding to the variability)
and «a (corresponding to the range).

® Any sub-Gaussian variable is sub-exponential, with parameters (v, a) = (o, 0).
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Sub-exponential variables and Bernstein bounds

Example 2.8 (Sub-exponential but not sub-Gaussian)
Let Z ~ N(0,1), and consider the random variable X = Z2.
-A
. A(X_l) — e . . . 1 .
® Since [E[e ] T the mgf of X is infinite for A > > and thus X is not
sub-Gaussian.

® However, X is sub-exponential with parameters (v, a) = (2,4).
For |A| < 1/4, we have
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Sub-exponential variables and Bernstein bounds

Proposition 2.9 (Sub-exponential tail bound)
Suppose that X is sub-exponential with parameters (v, a). Then,

2

e 22 ifo<t<
PX-u>t)< ;

e 22 fort> —.
(04

® The behavior of X is sub-Gaussian toward the center, however the tail
eventually decays like a exponential variable.

® As with the Hoeffding inequality, a concentration inequality bounding
P(IX - u| > t) can be derived with an additional factor of 2.
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Sub-exponential variables and Bernstein bounds
Proof of Prop 2.9.
WLOG assume u = 0, and apply the Chernoff bound:

AZ 2
P(X>t) < ialfe’“ E[e*X] < exp (—/\t + TV), forall A € [0,a™).

Now, let g(A, t) = —At + 2 and consider the quantity g*(t) = inf)¢[g 1) §(4, t) Note that, for

t

each fixed t > 0, g(A,t) is a quadratlc function of A that attains its minimum —— at A= =

If A* < a”!, we obtain the global minimum ¢*(f) = —— on O <t < Z. Otherwise, the
constrained minimum is achieved at the boundary /\Jr =a! glvmg the bound

t 1
(g _ t b e
) =gA"¢t) = a+2a < .
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Sub-exponential variables and Bernstein bounds

Direct calculation of the mgf may be impractical in many settings. Bernstein’s
condition offers a sufficient criterion for sub-exponentiality by controlling the
moments.

Definition (Bernstein’s condition)

For a random variable X with mean p and variance a2, Bernstein’s condition with
parameter b is satisfied if

1
IE[(X - w)]| < Ek! 022 fork=2,3,... (3)
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Sub-exponential variables and Bernstein bounds

When X satisfies the Bernstein condition, then it is sub-exponential with
parameters determined by ¢2 and b:
Proposition 2.10 (Bernstein-type bound)

For any variable satisfying the Bernstein condition (3), we have
12622 1
E[e*X-M] < T forall |A] < o
and, moreover, the concentration inequality

2

P(IX — y| > £) < 2¢ 2% forall t > 0.
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Sub-exponential variables and Bernstein bounds

Proof of Prop 2.10.
By the power series expansion of the exponential, we have

AZ 2 o k
E[e!X 0] =1+ —— 2 pElX gl
/\2 2 /\2 2
S E IAlb)-2

Then, for any |A]| < 1/b, we obtain

Ag%2 i
S e 1-bjA| ,
1-blA|

E['* W] <1+

using the summation of the geometric series and the bound 1 + ¢ < ¢'.

22(V20)?
Moreover, it follows that X is (v20, Zb)-sub-exponential since E[e'X W] <e™ 2

) in the Chernoff bound.

For the concentration inequality, set A =
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Sub-exponential variables and Bernstein bounds

Remark 1.
e |ike the sub-Gaussian property, the sub-exponential property is preserved
under summation for independent random variables.
® If {Xi}i-; is an independent sequence of random variables with mean p; and
sub-exponential parameters (v, &), we can bound the of ¥ (X — i) as

2

n
]E[/\Zkl}(k#k) H]E Xk#k <H82,

valid for all |A| < (max;_,

.....
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Sub-exponential variables and Bernstein bounds

Remark 1 (continued).

® Consequently, EZ=1(XI< — Ug) is (v., a,)-sub-exponential, with

n
2
v*:1/ v a, = Mmax .
kgl k k=1,..n

® This observation leads to the tail bound

n@

18 e 203m if0<t<
P X-p) 2t <y,
n
k=1

Vi
e 2ax fort > —.
N,
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Sub-exponential variables and Bernstein bounds

Remark 2.
® Prop 2.10 has an important consequence even for bounded random variables.

® Suppose |X — u| < b. Then X satisfies the Bernstein condition with parameter
¢ = b/3, since

|
E[IX - ul] < 0262 = 6235262 < ’%azck—z,

using the inequality 32 < g forall k > 2.

¢ Since the Bernstein bound involves both the variance ¢2 and the bound b, it is
substantially better than the sub-Gaussian bound when ¢? < 12.
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Sub-exponential variables and Bernstein bounds

Remark 2 (continued).

® Bernstein bound is also often stated for the bounded case where X; are
independent mean-zero variables with |X;| < b foralli =1, ..., n. Letting

1
02——2 07, we have

j=1"1"
! zn: i forallt>0
n - 202+2ct/3 -

® |n general, for bounded random variables, Bennett’s inequality can be used to
provide sharper control on the tails.
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Sub-exponential variables and Bernstein bounds

Remark 3. If a variable is known to be bounded only from above, it is still possible to
derive one-sided Bernstein-type bounds:

Proposition 2.14 (One-sided Bernstein’s inequality)

If X < b almost surely, then

LE[x2
E[e}X-EXD] < exp| 2 forall A € [0, 3/b).
1

Consequently, given n independent random variables such that X; < b almost surely, we
have

n

1
P - i;(xi - E[X]]) > (S) <exp|-

no?

2(} 3, B+ 2|

26/88



Sub-exponential variables and Bernstein bounds

Example 2.11 (x2-variables)

Let Y := 3}/, Z; be a x*-distributed with 1 degrees of freedom, where
Z " N, 1).
® \We have shown in Example 2.8 that Z% is (2,4)-sub-exponential.

e Consequently, Y is (24/n,4)-sub-exponential, and thus we obtain the two-sided
tail bound
1,
Pl[=>22-1
Ly

The concentration of y?-variables plays an important role in analyzing procedures
based on random projections, as illustrated in the next example.

> t) < 2e7"B forallt € (0,1).
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding)
Suppose that we are given N > 2 distinct vectors {u!, ..., uN}, with each vector lying in IR%.

If the data dimension d is large, it might be expensive to store and manipulate the original
dataset. Thus, one might be interested in projecting the vectors onto a space of lower
dimension.

® We aim to achieve dimensionality reduction by constructing a mapping F : RY — R"”
with m < d, while preserving some key features.

® The Johnson-Lindenstrauss embedding preserves pairwise distances with a multiplicative
tolerance 6 € (0,1), so that

i\ _ B2
(1—5)3M5(1+6) for all pairs u' # 1. (4)

Il — |3
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding; continued)

We can construct such a mapping F as follows:
e First, form a random matrix X € R"* filled with independent N(0,1) entries.
® Then, define a linear mapping F : R? — R via u — Xu/+/m.
We now verify that F satisfies the bound (4) with high probability.
® |et x; denote the i-th row of X, and consider some fixed u # 0.
® Since x; is a standard normal vector, the variable (x;, 1/||u|,) is also standard Gaussian.

® Hence, the quantity

IXuly &
=2 = Y, uflully)
[[ll3 i=1

follows a x2-distribution with m degrees of freedom, due to the independence of rows.
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding; continued)

® Therefore, applying the result from the previous example, we obtain
7

® Rearranging and recalling the definition of F yields the bound

P(IIF(M)II§

lull3

X3

-1
m||ull3

> 5) <2em*B  forall § € (0,1).

¢[1-6,1+ 6]) < 2B forany fixed 0 # u € RY.
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Sub-exponential variables and Bernstein bounds

Example 2.12 (Johnson-Lindenstrauss embedding; continued)

® Applying the union bound with (1;’) distinct data points, we conclude that

F(u! — 1)|3 , ) N
P M ¢[1-6,1+0] forsomeu' #uw|<2| |emB,
[t = w/]l3 2
® For any € € (0,1), this probability can be driven below e by choosing m < 5 log(N/e).

Note that this quantity does not depend on the original dimension d, and scales only
logarithmically with the number of data points N.
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Sub-exponential variables and Bernstein bounds

Theorem 2.13 (Equivalent characterizations of sub-exponential variables)

For a zero-mean random variable X, the following statements are equivalent:
(i) There are non-negative numbers (v, @) such that

222 1
E[e*X]<e 2z forall |A] < —.
a
(i) There is a positive number c, > 0 such that E[e*X < oo for all |A| < c,.
(iii) There are constants ¢;, ¢, > 0 such that
P(X| = t) < cie?t forallt > 0.

. . E[X¥] L .
(iv) The quantity y := sup,., [k—] is finite.

32/88



Outline

Chapter 2: Basic tail and concentration bounds

Martingale-based methods



Background on martingales

® So far, we have covered two elementary bounds—namely, the Hoeffding and Bernstein
bounds—which provide useful results for sub-Gaussian, sub-exponential, or bounded
variables.

® Often, we are also interested in the behavior of f(X) — E[f(X)]. When the function f
satisfies a certain condition, called the bounded difference property, we can derive a
Hoeffding-like bound.

® Such a bound is obtained via a telescoping decomposition
FX) =EfFX)] =Y, = Yo = D(Ye = Yier),
k=1

where the sequence Y = E[f(X) | X, ..., X\] forms a specific type of martingale
known as the Doob martingale. Here, we aim to prove the bounded difference
inequality using bounds on martingale difference sequences.
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Background on martingales

Given a probability space (QQ,.#, P), a nested sequence of sub o-fields of Fis called
a filtration, meaning .7, C %, for all k > 1. A sequence of random variables {Y}};2,
is adapted to the filtration {#};2; if each Y} is .#-measurable.

Definition 2.15 (Martingale)

Given a sequence {Y;};2, of random variables adapted to a filtration {#};2,, the
pair {(Ye, Z1)}ie; is a martingale if, for all k > 1,

E[[Yyl] < oo and E[Yj,q | F] = Yj.

Roughly speaking, if a variable is a martingale, the best prediction of tomorrow is given
by today’s value.
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Background on martingales

Remarks.

* If the filtration is defined by another sequence of r.v.s {X;};2; via the canonical
o-fields 7 = 0(X;, ..., Xi), we say that {Y}72; is a martingale w.r.t. {X;}72;.

e |f a sequence is martingale with respect to itself (i.e. with .7, = a(Y1, ..., Y), we
simply say that {Y}};2, forms a martingale sequence.

¢ |n general, the notion of martingale can be defined for stochastic processes as
follows. For a filtered probability space (Q, .7, {F}1>0, P), an adapted process
{(Xt, FD)}is0 is @ martingale if

E[|X;]] <o and E[X; | %] =X, foralls<t.
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Background on martingales

Another useful notion is that of martingale difference sequences.

Definition (Martingale difference sequence)

An adapted sequence {(Dy, 7)), is called a martingale difference sequence if, for all
k>1,
E[IDil] < 0o and E[Dy,q | F] =0.

® As suggested by their name, such difference sequences arise in a natural way
from martingales by defining Dy = Y}, — Y.

® For any martingale sequence {Y}};_,, we have the telescoping decompositon
Y,-Yy= 22:1 Dy, where {Dy}}_; is a martingale difference sequence.
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Background on martingales

Example 2.17 (Doob construction)

Given a sequence of independent random variables {X,};_;, define the sequence
Y, =E[f(X) | X, .. Xi], and suppose that E[|f(X)|] < co. We claim that {Y;}}_; is a
martingale w.r.t. {X;}}_;.

® Writing X} = (X, ..., Xy), we indeed have
E[Y,]] = E[E[f(X) | X{]ll < BlIf(X)I] < oo,
due to Jensen’s inequality.
® Moreover, by the tower property,
E[Yi | X{1= E[E[f(X) | X1 | Xi] = E[f(X) | X{] =Y,
and the second condition is also satisfied.

® Note that D, := Y} — Y;_; is a martingale difference sequence.
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Concentration bounds for martingale difference
sequences

We begin by stating and proving a general Bernstein-type bound for a martingale difference
sequence, which can be used to bound the quantity Y,, — Y, or the sum ZZ:1 D, itself.

Theorem 2.19

Let {(Dy, Z1)}i2, be a martingale difference sequence, and suppose that
E[e’Dx | F_4] < e*4/2 almost surely for any |A| < 1/a;.Then the following hold:

(@) The sum Z:zl D is sub-exponential with parameters (1 /E:zl v2, a*), where

(b) The sum satisfies the concentration inequality

d

2

— n 2
2 Tt f0<t< Bk -
>t < a,

n
2. D
k=1

—L v
e 2 ift> ===
a,

38/88



Concentration bounds for martingale difference
sequences

Proof of Thm 2.19.
For any scalar A such that |A] < % conditioning on .%,_; and applying iterated expectation
yields

E[¢} Zis ] = B[ ) Deg[eA0n | 7, 4]

-1
< IE[EA D Dk]e/\zvg/zl

where the inequality follows from our assumption.

lterating this procedure yields the bound E[e" Zis ] < ¢/ Zict ¥i2, valid for all |A| < a3l
The tail bound follows from applying the Bernstein bound from Prop 2.9.

O
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Concentration bounds for martingale difference
sequences

Again, we need to isolate sufficient and easily checkable conditions for the
differences Dy to be sub-exponential. Since bounded random variables are
sub-Gaussian, we obtain the following corollary:

Corollary 2.20 (Azuma-Hoeffding)

Let {(Dx, #1)}i2, be a martingale difference sequence for which there are constants
{(ax, b)}i=1 such that Dy € [ay, bi] almost surely fork =1, ..., n. Then, forall t > 0,

d

Proof Since Dy € [ay, bi] a.s., the (Dy | F_1) € [ag, b] a.s.; use a similar argument with the
sub-Gaussian parameter (b, — a;)/2 and the Hoeffding bound.

n 2
YD = t) < 2¢ Timal?,

k=1
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Concentration bounds for martingale difference
sequences

A key application of Cor 2.20 concerns functions with the following property:

Definition (Bounded difference property)

Given vectors x,x’ € R” and an index k € {1, ..., n}, define a new vector x € R" via

x\-k - x],‘ Ifjik,
/ x, ifj=k

We say that f : R” — R satisfies the bounded difference property with parameters
(Ly,..,L,) if, forallk =1, ...,n,

If(x) - f(x¥) < Ly forallx,x’ € R™.
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Concentration bounds for martingale difference
sequences

Corollay 2.21 (Bounded difference inequality; McDiarmid’s inequality)

Suppose that f satisfies the bounded difference property with parameters
(Ly, ..., L,) and the random vector X = (Xj, ..., X,,) has independent compoments.
Then,

212

PUF(X) — ELFCON = B) < 2¢ Z=15% forallt > 0.

Remark. In the special case when f is L-Lipschitz w.r.t. the Hamming norm defined via the
metric dy(v,y) = X, 1(x; # y;) for x,y € R", we obtain

212

P(If(X) - E[f(X)]l > t) <2e «* forallt>0.
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Concentration bounds for martingale difference
sequences

Proof of Cor 2.21.
Recall the Doob martingale and its associated martingale difference sequence

Dk = IE[f(}() | Xl/ er] - IE[f(}{) | Xl/ er—l]'

We claim that D, lies in an interval of length at most L, almost surely. Define the random
variables

Ag = inf E[f(X) | Xy, ., Xiq, X = E[f(X) | Xy, ., Xpa],
Bk = sup IE[f(){)D(l/ /kalrx] - ]E[f(X) | Xl/ /kal]'

By definition, Dy, — A, = E[f(X) | X3, ..., Xi] —inf, E[f(X) | X3, ..., Xk_1,x], 50 Dy > Ay a.s,,
and similarly, D, < By ass..
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Concentration bounds for martingale difference
sequences

Proof of Cor 2.21. (continued)
Observe that by the independence of X, we have

E[f(X) | x1, -, %] = Epa[f(xq, oo, X, Xigr, -, X)) forall (xy, ..., xy),

where [E,,; denotes the expectation over (X4, ..., X,,). Consequently, we have

Bk - Ak = sup 1Ek+1 [f(Xll ey Xk—l/ X, Xk+1/ ey XH)] - iI’}fIEk+1 [f(Xl/ ey Xk—l/ X, Xk+1/
x 2

< supx,yllElﬁ—l [f(Xll ey Xk—l/ X, Xk+1r ey Xn)] - ]Ek+1 [f(Xll ey Xk—l/ Y, Xk+1/

<Ly,

so we obtain the desired result as a corollary of the Azuma-Hoeffding inequality.

e, X1
Xl
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Concentration bounds for martingale difference
sequences

Example 2.23 (U-statistics)

Let ¢ : R> —> RR be a symmetric function of its arguments. Given an i.i.d. sequence X, k > 1,
of random variables, the quantity

1
HiE= (— N 8(X;, X)

n
2) j<k
is known as a pairwise U-statistic.

® Forinstance, if g(s,t) = |s — |, then U is an unbiased estimator of the mean absolute
pairwise deviation E[|X; — X,]].

® Other examples of the U-statistic include the Mann-Whitney U-statistic and Kendall's
tau.

® Note that U is not a sum of independent r.v.s, although the dependence is relatively

weak.
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Concentration bounds for martingale difference
sequences

Example 2.23 (U-statistics; continued)

® Suppose g is b-uniformly bounded, so that ||b||,, < oco.
* Viewing U as a function f(x) = f(x, ..., x,,), for any given coordinate k, we have

1
f(0) = FN] < = D I8(x), %) - 8(xj, %)
(2) j#k

L (n-1)2b) _ 4b

I

4b

so that the bounded differences property holds with L, = - in each coordinate.

® Therefore, by Cor 2.21, we obtain

nt2

P(U-E[U]|=1) < 2¢ s2.
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Lipschitz functions of Gaussian variables

Another useful bound can be derived for Lipschitz functions of Gaussian random
variables.
Definition (L-Lipschitz function)

We say that a function f : R” — R is L-Lipschitz with respect to the Euclidean
norm || - ||, if

If(x) - f(y)| < Lllx—yll, forallx,yeR"
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Lipschitz functions of Gaussian variables

The following result guarantees that any L-Lipschitz function of i.i.d. standard
Gaussian variables is sub-Gaussian with parameter at most L, regardless of the
dimension n.

Theorem 2.26

Let (Xy, ..., X,,) be a vector of i.i.d. standard Gaussian variables, and let f : R" — R
be L-Lipschitz w.r.t. the Euclidean norm. Then the variable f(X) — E[f(X)] is
sub-Gaussian with parameter at most L, and hence

2

P(f(X)-E[f(X)]l =t) <2 22 forallt>0.
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Lipschitz functions of Gaussian variables

Remarks.

* Roughly speaking, f(X) behaves like a scalar Gaussian variable with variance L2.

* While we omit the proof of Thm 2.26, it relies on properties specific to the
standard Gaussian distribution.

® Hence, the dimension-free concentration of Lipschitz functions need not hold
for sub-Gaussian distributions in general without additional assumptions such as
convexity.

e However, similar concentration results do hold for other non-Gaussian
distributions, including the uniform distribution on the sphere and strictly
log-concave distributions.
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Lipschitz functions of Gaussian variables

Thm 2.26 is useful for a broad range of problems. Although we do not know the
explicit value of E[f(X)], we can still obtain some strong concentration bounds:

Example 2.29 (Order statistics)

Given a random vector (Xj, ..., X;,), consider the order statistics X1y < -+ < X.
® It can be shown that |X) — Yyl < [IX = Y|l < IX - Y], forallk =1, ..., n.
® Consequently, when X; kL N(0,1), we obtain

62

P(I Xy — E[Xgll 2 6) <2e"2 forall6 >0,

since each order statistic is 1-Lipschitz.
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Lipschitz functions of Gaussian variables

Example 2.29 (Singular values of Gaussian random matrices)

For integers n > d, let X € R™ be a random matrix with i.i.d. N(0,1) entries, and denote its
singular values by
01(X) = -+ 2 04X) > 0.

® By Weyl's theorem, we have

max [0,(X) = 0(Y)] < IX = Yl < IX = Y,

where || - ||, and || - || are the operator 2-norm and the Frobenius norm, respectively.

® Note that the Frobenius norm plays the role of the Euclidean norm. Consequently,
each singular value is a 1-Lipschitz function of the random matrix, and we obtain

2

P(loi(X) - E[oy(X)]l 2 6) <27 forall § > 0.
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Motivation

® |n the previous chapter, we discussed concentration inequalities that allow us
to bound quantities of the form |% Z?:l f(X;) = E[f(X)]| for a fixed function f.
¢ |n this chapter, we strengthen these results by deriving uniform bounds.
® That is, given a function class .#, we explore deviations of
1
sup | Tt F(X) ~ ELFX)]]-
e Why are uniform bounds so important? To motivate this, we briefly review two

key concepts in both classical and modern statistics: the plug-in principle and
empirical risk minimization (ERM).
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The plug-in principle

® |n statistical settings, a typical use of the empirical cdf if to construct estimators
of various quantities associated with the population cdf.

® Many such estimation problems can be formulated in terms of a functional
y : F— y(F), which maps a cdf F to a real number y(F).

® The plug-in principle suggests replacing the unknown F with the empirical cdf
la, thereby obtaining an estimate of y(F).

Example 4.1 (Expectation functionals)
Given some integrable function g, we define the expectation functional y, via

Vo) = [ g(x) dF(x).
Then, the plug-in estimate of [E[g(X)] is given by yg(fn) = % 2?21 g(Xy).
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The plug-in principle

A natural question arises: when does the plug-in estimator y(FAn) converge to y(F) in
probability (or almost surely)?

® This question can be addressed in a unified manner for many functionals by
defining a notion of continuity.

¢ Given a pair of cdfs F and G, we can measure the distance between F and G
using the sup-norm ||G — Fl|, = sup;cr|G(t) — F(t)].

® We say that the functional y is continuous at F in the sup-norm if, for all € > 0,
there exists a 6 > 0 such that

IG-Fllow <6 = [Y(G)-y(F) <e.
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The plug-in principle

® For any continuous functional, the question of consistency is now reduced to
the convergence of the random variable ||F,, — F||.

® |n light of this perspective, we revisit the well-known Glivenko-Cantelli
theorem.

Theorem 4.4 (Glivenko-Cantelli)

For any distribution, the empirical cdf 1:"; is a strongly consistent estimator of the
population cdf in the uniform norm, meaning that

IIF, = Flloo = 0.
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Uniform laws for more general function classes

We now consider uniform laws in broader contexts.

Let .# be a class of integrable real-valued functions with domain 2] and let {X;}_;
be a collection of i.i.d. samples from some distribution P over 2. Consider the
random variable

1 n
IP, = Pll&:= sup [= D] £(X;) - E[fF(X)]|.
feF M i

Definition 4.5

We say that .7 is a Glivenko-Cantelli class for P if ||P,, — P||#converges to zero in
probability as n — .

Remark. When almost sure convergence holds, we say that .7 satisfies a strong
Glivenko-Cantelli law.
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Empirical risk minimization
Variables of the form ||P,, — P||#are ubiquitous in statistics, especially in methods
based on empirical risk minimization.

¢ Consider an indexed family of probability distributions {Py | 6 € ®}, and
suppose we are given samples X := {X;}’_;, drawn i.i.d. according to Py for
some unknown 6*.

e Let O — Zp(X) be aloss function that measures the fit between parameter 6
and the sample X.

® The principle of empirical risk minimization is based on the empirical risk
R,(6,0") = E Zp(X
® The empirical risk should be contrasted with the population risk

R(6, 0%) := By [ Zp(X)].
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Empirical risk minimization
In practice, one minimizes the empirical risk over some subset © of the full space

©. The statistical question is how to bound the excess risk,

E©,6%) := R0, 6%) - eiggo R(0, 6).

® For simplicity, assume that there exists some 6, € ©, such that
R(eo, Q*) = iIlf9€®O R(Q, 6*)
® Then, the excess risk can be decomposed as

E0,0") = {R(0,0%) - R, (0,07} + {R,(0,07) — R, (0, 09} + {R,(60, 0) - R(B, 0))}.

T, T><0 T3
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Empirical risk minimization

E6,6" = {R(D,6°) - R,(0,07)} + {R,(0,6") = R, (Bp, 0)} + {R, (60, 67) = R(6, 67)}.

T, T,<0 T,

® The term T, is non-positive by the definition of 6.
® Theterm T; = % 2?:1 Zo,(Xi) = Ex[Z,(X)] can be dealt with techniques from Chapter

2, since 6, is an unknown but deterministic quantity.
® However, we need stronger results to control T; = Ex[-Z5(X)] - % 2?:1 LX),
since 0 is a random quantity depending on the sample X.

® Suppose we can control ||P,, — Pll¢@, Via a uniform law over the loss function class
L(Oy) = {x = Fp(x), 0 € Og}. Since T; and T3 are both dominated by ||P,, - Pll¢(,), we
conclude that the excess risk is at most 2||P,, — Pll¢@,)-
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Empirical risk minimization

The analysis of ERM is fundamental in statistical learning theory. Suppose we aim to
learn a target function f, by computing the empirical risk minimizer f over a
predefined hypothesis space.

The error f, — f can be decomposed as follows:
foof= fmf o+ f-f o+ foF

R — T
approximation error optimization error

* f0=arg minfey]E[,i”(Y,f(X))]: Expected risk minimizing function.

* f=arg minfeyi Y, Z(Y;, f(X;): Empirical risk minimizing function.

J f: Approximation offby optimization.
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Empirical risk minimization

In particular, uniform bounds play an essential role in controlling the generalization
error in statistical learning.

Target
L]

.
. )
L Approximation

error

H

Hypothesis space Best model

Initial guess

Optlmlzatlon’ _e
Optimization/ Training eror__ -~ Empirical risk
jfimizer

Learned model
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Rademacher complexity

e So farin our discussion of empirical risk minimization, it is natural to think that
the generalization ability in a statistical learning problem depends on the “size”
of the function class .#.

* If Fis finite, its cardinality serves as a measure of its size. However, in many
practical scenarios, .7 is infinite, and we need a more refined notion.

® One such notion is Rademacher complexity, which quantifies the ability of a
function class to fit random binary noise. A function class with high
Rademacher complexity is prone to overfitting, leading to poor generalization
in ERM.
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Rademacher complexity

Let .# be the function class of our interest. For any fixed collection x := (x4, ..., x,,)
of points, consider the subset of R" given by

F ) = ((f), o, f) | f €T,
i.e. 7 (x7) is the set of all possible realizations of applying f to x| € R".

* If Fis a class of binary classifiers, then |7 (x])| < 2".

* Intuitively, the cardinality of .7 (x}) reflects the variability that can be captured
through .7, given a fixed sample.
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Rademacher complexity

Definition (Rademacher complexity)

Let ¢; be i.i.d. Rademacher variables. Regarding the sample x7 as fixed, define the
empirical Rademacher complexity of a function class .# as

Then, for random samples X := {X;}IL,, the Rademacher complexity of #is given by

i.e. Rademacher complexity is the average of the maximum correlation between
(f(X1), ..., f(X,)) and the “noise” vector (¢4, ..., €,).

2 &if (%)

R(F (x])n) = E, [?Up

Iin(F) = Bx[Z(F (XT)/n)] = Ex e [?UI;

1 n
- ) &if(X)
i=1
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Rademacher complexity

The following theorem presents a fundamental result, providing a connection
between Rademacher complexity and the Glivenko-Cantelli property for uniformly
bounded function classes.

Theorem 4.10

Let .# be b-uniformly bounded, meaning that ||f||., < b for all f € & Then, for any
n>1and d > 0, we have

IPy — Plle < 2%,(F) + 6
2
with P-probability at least 1 — exp (%)

Consequently, as long as .%,(%) = o(1), we have ||P,, — P||gaj>' 0.
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Rademacher complexity

Proof of Thm 4.10.

Step 1. Concentration around mean

First, we claim that ||P, — P||&- [E[||P,, — P||#] < t with P-probability at least 1 — exp (—Z—;)
For notational convenience, define the recentered functions f(x) := f(x) — E[f(X)], and
write ||P,, — P||> = sup f67|% L F)|

Now, regarding the samples as fixed, consider the following function

G(xq, ..., x,) = sup
fe7
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Rademacher complexity

Proof of Thm 4.10. (continued)

We claim that G satisfies the bounded differences property with a uniform constant 2b/n.
Since G is invariant to permutations of x;'s, it suffices to bound |G(x) — G(y)| when the first
coordinate x; is perturbed.

For any function f = f — E[f], we have

- bup

E h(y,)

< Z|f(x1) - fy)l
2b
;-

Taking the supremum on both sides, we obtain G(x) — G(y) < 2b/n, and thus
|G(x) = G(y)| < 2b/n by symmetry. Therefore, we obtain the desired result using the bounded
differences inequality (Prop 2.21).
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Rademacher complexity

Proof of Thm 4.10. (continued)
Step 2. Upper bound on mean

Now, it remains to prove [E[||P,, — P||# < 2.%,(F).

Letting (Y4, ..., Y,,) be a second i.i.d. sequence independent of (X, ..., X,,), we use a
symmetrization argument as follows:

—_

, 2lf - lEy[f(Yi)]}|]

E, [% IS —f(Y»}]H
1

w alf X)—f(Yf)}”.

i=

E[lP, - Pll#] = Ex [Sup

(7

=Ey [sup

fes

=

<Exy [sup
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Rademacher complexity

Proof of Thm 4.10. (continued)

Let (¢4, ..., €,) be an i.i.d. sequence of Rademacher variables, independent of X and Y.

Then, e/(f(X;) - F(Y:) £ £(X) - £(Y;), yielding

1 n 1 n
Exy [SUB - E{f(xi) - f(Y)} ] =Exy.|s [ up = E &(f(X) - f(Y2) }
feF | iz e |M o
1 n —
<21Exé[;lelr/) - ; ” 2R (F)-

Combining Steps 1 & 2 gives the desired result.
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Necessary conditions with Rademacher complexity

¢ In the proof of Thm 4.10, we used the symmetrization technique, relating the
random variable ||P,, — P||#to its symmetrized version

E eif (X))

1——1

1Snll 5= sup |

* Note that the expectation of ||S,|| #is the Rademacher complexity of .7.

® Nonetheless, one may wonder whether much was lost in bounding ||P,, — P|| #
with ||S, ||# Thus, it is worthwhile to explore the relationship between these

two quantities.
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Necessary conditions with Rademacher complexity

The following “sandwich” result provides valuable insight:

Proposition 4.11

For any convex non-decreasing function ® : R — IR, we have
1
Ex . [‘D (§||Sn||7)] < Ex[®(|P, - Pll7)] < Ex . [® (2lIS,llA)],
where .7 = {f — E[f], f € 7 } is the recentered function class.

In particular, when applied with ®(t) = ¢, we obtain

1
SEx. [IS,l5] < ExllIP, - Plls] < 2Ex. [IS,l1-
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Necessary conditions with Rademacher complexity

A consequence of Prop 4.11 is that ||P,, — P||#can also be bounded from below
using the Rademacher complexity.

Proposition 4.12

For any b-uniformly bounded function class .#, and any n > 1,6 > 0, we have

by AL

2yn

1
”Pn _P”J@'Z E%n(g)_

2
with P-probability at least 1 — exp (%)

® As aresult, if the Rademacher complexity .%,(.# ) remains bounded away from zero,
then ||P,, — P||#+cannot converge to zero in probability.

® Thus, for a uniformly bounded function class, the Rademacher complexity provides a

necessary and sufficient condition for it to be Glivenko-Cantelli.
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Upper bounds on the Rademacher complexity

* We end this chapter with a few elementary techniques for bounding the
Rademacher complexity, particularly those applicable to function classes with
polynomial discrimination.

® We also explore the related notion of Vapnik-Chervonenkis (VC) dimension and
their properties.

® More advanced techniques are addressed in Chapter 5, including those
involving metric entropy and chaining arguments.
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Classes with polynomial discrimination

Recall that, by definition, the cardinality of .7 (x) provides a sample-dependent
measure of the complexity of A

¢ If Fis a class of classifiers (or binary-valued functions), then |7 (x})| < 2".
® We are interested in classes for which |7 (x})| grows polynomially with n.

Definition 4.13 (Polynomial discrimination)

A class .7 of functions with domain Z”has polynomial discrimination of order v > 1 if,
each positive integer n and collection x7 of n points in 2 the set .7 (x])has
cardinality upper bounded as

|7 (D) < (n+1)".
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Classes with polynomial discrimination

The polynomial discrimination property provides a straightforward approch to
controlling the VC dimension:

Lemma 4.14

Suppose that .# has polynomial discrimination of order v. Then for all positive
integers n and any collection of points x| = (xy, ..., x;,),
R(F (4)n) = E, [sup

]<4D( " /vlog(n+1)’
feF N n

where D(x}) = supfegwl = 1f ) ; is the ¢,-radius of the set .7 (x})/+/n.

Z if (x;)
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Classes with polynomial discrimination

Remarks.
® Note that Lemma 4.14 bounds the empirical Rademacher complexity.

® However, in the special case where .7 is b-uniformly bounded so that D(x]) < b
for all samples, we obtain

1 1
FAT) < 4b,/% foralln > 1. (5)

Combined with Thm 4.10, this implies that any bounded function class with
polynomial discrimination is Glivenko-Cantelli.

® One such instance is the class of indicator functions with polynomial
discrimination, which are uniformly bounded by b = 1.
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Classes with polynomial discrimination

With new tools in hand, we revisit the classical Glivenko-Cantelli theorem from a
more quantitative perspective.

Corollary 4.15 (Classical Glivenko-Cantelli)

Let F(t) = P(X < t) be the cdf of a random variable X, and let [5; be the empirical cdf
based on n i.i.d. samples X; ~ P. Then,

—~ log(n +1 _no?
P[nPn—anzs Mm]sfz

2 forall6 >0,
n

and hence ||15; — Il 2o.

Remark. The sharpest bound is given by P(Ilfn —Fllo =0) < 2¢721"  due to Massart (1990).
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Classes with polynomial discrimination

Proof of Cor 4.15.

For a given sample x¥, consider the set .7 (x}), where .7 is the set of all indicator functions
of the half-intervals ( oo, t] fort € R.

Reordering the samples as x(;y < -+ < x(,), the real line is split into at most n + 1 pieces.
Thus, for any sample x7, we have |7 (x})| < n + 1. Applying the inequality from (5) with b =1

and v = 1, we obtain %,(7) < 4\/W

The claim then follows from Thm 4.10. O
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Vapnik-Chervonenkis dimension

The theory of Vapnik-Chervonenkis (VC) dimension provides a more efficient means
of verifying the polynomial discrimination property for a function class.

We focus on function classes .# consisting of {0,1} binary-valued functions, i.e.,
indicator functions. We begin by defining the concept of shattering.

Definition 4.16 (Shattering and VC dimension)

Given a class .7 of binary-valued functions, we say that the set x| = (xq, ..., x,,) is
shattered by Fif | # (x])| = 2".

The VC dimension v(%) is the largest integer n for which there is some collection
X = (xq, ..., x,,) of n points that is shattered by .7. When v(%) is finite, the function
class .7 is said to be a VC class.
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Vapnik-Chervonenkis dimension

Remarks.

® Note that there is a 1-1 correspondence between a class of sets .%’and its
corresponding class of indicator functions .#. Accordingly, we use the
notations .’(x}) and v(S).

® For a given set class .7 the shatter coefficient of order n is defined as

s(&,n) = ( max ) |7 (x|
X1,eXn

Thus, x7 is shattered by .if s(.*, n) = 2".
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Vapnik-Chervonenkis dimension

Example 4.17 (Intervals in IR)

First, consider the class of all indicator functions for left-sided half-intervals on R,
namely Ae := {(o0,a] | a € R}.

e |t is implicit in the proof of Cor 4.15 that v(#A.) = 1:
® Any singleton set x; can be picked out by .A.¢.

® However, for any x; < x,, it is impossible to find a left-sided interval that contains
Xy but not Xq.

® |ndeed, we have shown more specifically that | A.n| < 7 + 1.
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Vapnik-Chervonenkis dimension

Example 4.17 (Intervals in IR; continued)

Now, consider the class of all two-sided intervals on IR, namely
Fiwo =1{(b,a] | a,b e Rs.t. b<al.

® |tis easy to verify that v(.4,,) = 2:

® Any two-point set can be shattered by .#4,..

® However, given three distinct points x; < x, < x3, <*wo Cannot pick out the
subset {x, x3}.

® Moreover, by an argument similar to Cor 4.15, we can obtain a crude bound
|- S ol < (1 +1)%.
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Vapnik-Chervonenkis dimension

The previous example showed two function classes with finite VC dimension, both
of which also had polynomial discrimination. Is this merely a coincidence?

In fact, any finite VC class has polynomial discrimination with degree at most the VC
dimension:

Proposition 4.18 (Vapnik-Chervonenkis, Sauer and Shelah)

Consider a set class .#with v(.’) < 0. Then, for any collection of points
x| = (xq1, ..., x,) with n > v(.%), we have

W.P) V()
rais 3 ()< (o)

i=0

In particular, we have |7 (x})| < (n + 1)"*) for n > v(.%).
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Controlling the VC dimension

Since classes with finite VC dimension have polynomial discrimination, it is of
interest to develop techniques for controlling the VC dimension.

To begin with, the property of having a finite VC dimension is preserved under a
number of basic operations:

Proposition 4.19
Let .%and 7 be set classes, each with finite VC dimensions. Then the following set
classes are also of finite VC dimension:

(@) The set class .%¢ :={S° | S € .¥}.

(b) Thesetclass ¥ L. ={SUT | Se ., Te.T}.

(c) Thesetclass ¥ Mo ={SNT | Se. ¥, TeT}
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Controlling the VC dimension

For any real-valued function g : 27 — R, define its subgraph at level zero by the
subset S, = {x € 27 | g(x) < 0}. Analogously, for a function class Z, we obtain the
subgraph class (%) := {Sgl g€ G

In many cases, the function class £ has a vector space structure. The following
proposition allows us to upper bound the VC dimension of the associated set class
FA(D).

Proposition 4.20 (Finite-dimensional vector spaces)

Let Zbe a vector space of functions ¢ : R? — R with dimension dim(%) < co. Then
the subgraph class .%(%) has VC dimension at most dim(%).
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Controlling the VC dimension

We demonstrate the use of Prop 4.20 through several examples:

Example 4.21 (Linear functions in R? and half-spaces)

® For a pair (a,b) € R? x R, define the linear function fap(x) :=<a,x)+b,and
consider the family #% := {f,, | (a,b) € R? X R}.

® The associated subgraph class corresponds to the collection of all half-spaces
of the form H,,;, := {x e R? | (a,x) + b < 0}.

® Since % is a vector space of dimension d + 1, it follows that . (#?) has VC
dimension at most d + 1.

Remark. In general, it can be shown that the VC dimension of .5 (.#%) is d + 1 for all
dimensions.
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Controlling the VC dimension

Example 4.22 (Spheres in RY)

® Consider the sphere S, := {x € R? | |lx — all, < b}, where (a,b) e R x R,
specify its center and radius, respectively, and let Z‘éhere denote the collection
of all such spheres.

¢ |f we define the function
d
Fas@) = 1 =2 3 + Nl ~ ¥,
=i

then we have S, = {x € R? | f,,(x) < 0}, so that the sphere S, is a subgraph
of the function f, ;.
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Controlling the VC dimension

Example 4.22 (Spheres in R%; continued)

® Define a feature map ¢ : RY — R™*2 via ¢(x) := (1, xy, ..., Xy, ||x|[3), and consider
functions of the form g.(x) := {(c, ¢(x)), where c € R9*2,

® The family of functions {g., c € R%+2} is a vector space of dimension d + 2, and it
contains the function class {f,,, (a,b) € R? X R,}.

¢ Consequently, the VC dimension of Z‘éhere isat most d + 2.

Remark. While this bound is adequate for many cases, it can be further sharpened to d + 1.
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