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What is a causal effect?

® Association vs causation: Does ice cream cause shark attacks?

Ice Cream Sales vs. Shark Attacks

Summer

Ice cream ? Shark attack

® \We must control for confounders to infer causality from observational data.
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What is a causal effect?

® Does smoking (Z, treatment) cause lung cancer (Y, outcome)?

® |magine a “parallel universe”, where you observe what happens under both Z =1 and
Z=0.
® Y(1), Y(0): Potential (counterfactual) outcomes

Universe B
Z=0

Universe A
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Z=1 |
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i

i

i

i

i
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Y(1)=1
lung cancer !

Y(0)=0
healthy

smokes doesn’t smoke

® However, we can only observe Y = ZY(1) + (1 — Z)Y(0).

¢ Average Treatment Effect (ATE): E[Y (1) — Y(0)]
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Identification and estimation of causal effects

o |dentification of ATE using weighting

ATE = E[Y(1) — Y(0)]
zy (1-2)Y

=B T 1o e

® Propensity score (PS): Probability of treatment given covariates
e(X)=P(Z=1]|X)

® Other causal effects, such as the ATT (Average Treatment Effect on the Treated),

can be identified similarly using the PS.
* Weights for ATE = (1, 1)

® Weights for ATT = (1, %)

' 1—e
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Identification and estimation of causal effects

¢ Inverse Probability Weighting (IPW): Based on the identification results, the
ATE can be estimated as follows:

N
— IPW 1-2)Y;
ATE — _—
Nze,(X N; 1— (X))

® The estimated propensity score é(X) can be obtained using any classification model,
e.g. logistic regression.
® When §; is close to 0 or 1, the weights 1/é; and 1/(1 — &;) can be extremely large.

® Can be highly unstable (large variance).
® Happens when treated and control groups differ substantially — “overlap issue”!
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Handling weak overlap in weighting methods

Empirical Overlap of Propensity Scores

e QOverlap assumption:
O<e(x)=P(Z=1|X=x)<1

B ® Weak overlap is problematic in weighting

methods due to units with extreme weights
such as 1/e ~ 0o or 1/(1 —e) ~ oo.
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Remedies so far

There have been three main approaches to handle weak overlap in the literature:

1. Trimming/truncating units with extreme weights
® | oss of sample size, sensitivity to the choice of cutoff

2. Targeting an alternative causal estimand
® Overlap weights and ATO (Average Treatment Effect of the Overlap Population)
® | ack of interpretability

3. Balancing weights

® Entropy Balancing, Covariate Balancing Propensity Score, etc.
® Optimization may be infeasible under weak overlap

We propose the mixing framework, which helps overcome the limitations of the above
approaches by creating a synthetic sample of mixed treated and control units.
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Main idea: Simple mixing strategy

Our strategy aims to intentionally increase overlap by mixing treated and control units.

Original dataset

treated

control

® Target population

Mixed dataset

treated

control

® Stronger overlap

® More stable estimation within

the mixed sample
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Main idea: Simple mixing strategy

(@ Mixed distribution

Mixed PS, Mixed IPW and their properties

Original dataset

treated

control

‘/\

~_

Mixed dataset

treated

control

@ Mixing implementation

(i) M-estimation (ii) Resampling algorithm
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Notation & Setup

Under Rubin’s Potential Outcomes Framework, our aim is to apply mixing to weighting
estimators of the Average Treatment Effect on the Treated (ATT).

Assumptions
1. Unconfoundedness: (Y(1), Y(0)) L Z | X
2. Overlap: 0 < e(x) =P(Z=1| X =x) <1 for all x

® (Y(0), Y(1)): Potential (counterfactual) outcomes

® Y: Observed outcome

® X: Observed covariates

® 7: Binary treatment indicator

7=E[Y(1) - Y(0) | Z = 1]: Target estimand (ATT)
fy x: Joint density of (Y, X)

fy x|z=z: Joint density of (Y, X) given Z =z
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Mixed distribution

Definition (Mixed distribution)

We define the distribution of (Y*, Z*, X*) as the distribution with the conditional joint
densities of (Y*, X*) given Z* = 1,0, respectively,

fy= x+|z+=1 = (1 = 8)fy x|z=1 + fy x|z=0

fy« x+*|z:=0 = fy x|z=0

for a fixed constant 0 < § < 1 and Z* to satisfy P(Z* = 1) = P(Z = 1) =: w. We refer to
the mixed distribution with a constant J as the simple mixed distribution.
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Mixed distribution

Original distribution

treated

control

Mixed distribution

treated

control
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Mixed propensity score

Lemma 1 (Mixed propensity score and its robustness)

*

Let e*(x) =P(Z"=1 | X" = x) be the propensity score of the mixed distribution. Then,

e

e T
1_e*(x)—(1—5)1_e(x)+5m for all x.

Figure 1. Behavior of e*(x) with respect to §
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Mixed IPW (MIPW) estimator

Theorem 1 (MIPW estimator and its consistency)
Using the mixed propensity score

*

e ()b
)= 1—-5

we define the Mixed IPW (MIPW) estimator as follows:

L _mzv D) -0 ) a-2)Y;
R 2 (1; (X)) — f’ﬁ) (1-2zr)

Under the strong ignorability assumptions, 7 is a consistent estimator of T.
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Mixing implementation 1: M-estimation

Proposition 1 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, § = Solvey Do v*(6; Y, Xi, Zi)) = 0] is an
M-estimator of 0 = (3,7, E[Y(1) | Z = 1], E[Y(0) | Z = 1]), where, for 0 < 6 < 1,

) om * )
{e*l(x;,e)z + ((l—ﬂ)e*(X;,B) - l—e*l(X;ﬂ)) (1- Z)} Vge*(X;B)

x . Z—T
VO, Y, X, Z) = 7Y — ZE[Y(1) | Z =1]

(D (1- 7)Y — 28D (1- 2)E[Y(0) | Z =1]

{(YI’ Z, Xi)}?:l _

{(\/i)ZiaXi) )/i*)Zi*7Xi*)}7:1 \\> 7,: > T
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Mixing implementation 1: M-estimation

Proposition 2 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, § = Solvey Do v*(6; Y, Xi, Zi)) = 0] is an
M-estimator of 0 = (3,7, E[Y(1) | Z = 1], E[Y(0) | Z = 1]), where, for 0 < 6 < 1,

) om * )
{e*l(x;,e)z + ((l—ﬂ)e*(X;,B) - l—e*l(X;ﬂ)) (1- Z)} Vge*(X;B)

x . Z—T
VO, Y, X, Z) = 7Y — ZE[Y(1) | Z =1]

e(X:B) (1-2)Y - e(Xi8) (1-2)E[Y(0) | Z=1]

1—e(XiP) T—e(X:B)
{()/I'aziuxi)}?zl .
(i, Zi, X, Y,'*,Zi*,Xi*)};;l \ 2 n— OO> -
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Mixing implementation 2: Resampling algorithm

Another way to implement mixing is to use a resampling algorithm that directly
estimates fy X|Z=z from the observed dataset.

{07 Z5 X)) e

Observed dataset /

N o . Aggregate
{(Yi, Zi, Xi)}ioy ~ Fy x| z2=2 — fy x|z=, Resample M times % 7

N\

({( Yi*7 Zi*’ XI'*)}I(’:].) m=M
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Mixing implementation 2: Resampling algorithm

The resampling algorithm allows for extensions to various weighting schemes, such as
Entropy Balancing or Covariate Balancing Propensity Score.

Proposition 3 (Extension to balancing weights)

Suppose W* is a balancing weight for X*, satisfying
E[X*|Z*=1]=E[W*X* | Z* =0].
Then,
Ww* — §-—

W= —— 1=«
1-96

is a balancing weight for X.
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Simulation study

Simulation 1 Simulation 2
M-estimation Resampling algorithm
° |PW vs MIPW ® Extension to Entropy Balancing
e Efficiency gain in terms of both ® Performance under model
finite- and large-sample misspecification

perspective

* Data generating process: e(X) = {1 +exp(—XT3)}71, X ~ N5(0, /)
® Overlap level (according to /3): Strong / Moderate / Weak
® Treatment effect: 7 = 1 (homogeneous)
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Simulation study for implementation 1: M-estimation

¢ Performance measures: Monte-Carlo simulation of (1) standard deviation estimates
and (2) Huber-White's robust standard error estimates
® Benchmark: ATO estimation via overlap weights (Li et al., 2018)

® ATO: A causal estimand under the subpopulation for which the average treatment
effect can be estimated with the smallest variance.

® True treatment effect: 1 (homogeneous) =— ATO = ATT =1

Estimator

IPW  MIPW OW

Target

ATT ATT ATO
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Results: IPW vs MIPW vs OW

Standard Error Estimator -+~

Strong OVL
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Figure 2: Monte Carlo simulation result: SD estimates (solid) and Huber-White robust SE estimates

(dotted) of IPW, MIPW, OW
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Simulation study for implementation 2: Resampling algorithm

® Scenario 1: The same weak overlap setting from previous study (true treatment

effect = 1)

® Scenario 2: A modified study from Kang & Schafer (2007) to endow model
misspecification but within weak overlap (true treatment effect = 210)

* Extension to Entropy Balancing (EB): Weighting method that estimates *-(X;)
by solving a constrained optimization problem to reduce model dependence

(Hainmueller, 2012).

Estimator

EB MEB OW

Target

ATT ATT ATO
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Results: EB vs MEB vs OW

Estimator EB — MEB ow
Correctly Specified Misspecified
0.25 5
0.20 4
S S
w 0.15 3
2 2
© ©
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17 17
0.05 1
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0.25 0.50 0.75 0.25 0.50 0.75
Delta Delta

Figure 3: Monte Carlo simulation result: SD estimates of EB, MEB, OW
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Results: EB vs MEB vs OW

Estimator EB — MEB ow
Correctly Specified Misspecified
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Figure 4: Monte Carlo simulation result: Finite-sample bias of EB, MEB, OW
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Future Work

® Heterogeneous mixing strategy: What if we allow § to vary according to the

values of covariates?

0 T e(x1) e(x2)1

Figure 5: Homogeneous (Simple) Mixing: shrink with same ratio

. . Vel

0 ™ e(x) ()

Figure 6: Heterogeneous (Advanced) Mixing: (blue) shrink less (red) shrink more
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Future Work

® Primary results

Estimator Bias SD
IPW 0.1812 0.2656
Simple Mixing 0.1590 0.2440

Heterogeneous Mixing

0.1497 0.2232

Table 1: Advanced mixing strategy

® Other interesting topics remain, including application of mixing to matching

methods.
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Summary

Key Takeaways

Mixing: A simple & practical tool for handling weak overlap in causal estimation to
control extremeness of inverse probability weights without additional assumptions

e Performance: Efficiency is enhanced without bias trade-off
(even under sufficient overlap)

e Straightforward interpretation: No need to shift the target estimand
e Flexibility: Applicable to broad range of weighting methods

® Open to further exploration: Heterogeneous mixing strategy

Thank you!

Email: suehyunkim@snu.ac.kr
Preprint link: https://arxiv.org/abs/2411.10801v3
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