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What is a causal effect?

• Association vs causation: Does ice cream cause shark attacks?

Summer
(X, confounder)

Ice cream
(Z, treatment)

Shark attack
(Y, outcome)

?

• We must control for confounders to infer causality from observational data.
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What is a causal effect?

• Does smoking (Z , treatment) cause lung cancer (Y , outcome)?
• Imagine a “parallel universe”, where you observe what happens under both Z = 1 and

Z = 0.
• Y (1),Y (0): Potential (counterfactual) outcomes

• However, we can only observe Y = ZY (1) + (1− Z )Y (0).

• Average Treatment Effect (ATE): E[Y (1)− Y (0)]
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Identification and estimation of causal effects

• Identification of ATE using weighting

ATE = E[Y (1)− Y (0)]

= E
[
ZY

e(X )
− (1− Z )Y

1− e(X )

]
• Propensity score (PS): Probability of treatment given covariates

e(X ) = P(Z = 1 | X )

• Other causal effects, such as the ATT (Average Treatment Effect on the Treated),
can be identified similarly using the PS.

• Weights for ATE = ( 1e ,
1

1−e )
• Weights for ATT = (1, e

1−e )
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Identification and estimation of causal effects

• Inverse Probability Weighting (IPW): Based on the identification results, the
ATE can be estimated as follows:

ÂTE
IPW

=
1

N

N∑
i=1

ZiYi

êi (X )
− 1

N

N∑
i=1

(1− Zi )Yi

1− ê(Xi )
.

• The estimated propensity score ê(X ) can be obtained using any classification model,
e.g. logistic regression.

• When êi is close to 0 or 1, the weights 1/êi and 1/(1− êi ) can be extremely large.
• Can be highly unstable (large variance).
• Happens when treated and control groups differ substantially → “overlap issue”!
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Handling weak overlap in weighting methods

• Overlap assumption:
0 < e(x) = P(Z = 1 | X = x) < 1

• Weak overlap is problematic in weighting
methods due to units with extreme weights
such as 1/e ≃ ∞ or 1/(1− e) ≃ ∞.
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Remedies so far

There have been three main approaches to handle weak overlap in the literature:

1. Trimming/truncating units with extreme weights
• Loss of sample size, sensitivity to the choice of cutoff

2. Targeting an alternative causal estimand
• Overlap weights and ATO (Average Treatment Effect of the Overlap Population)
• Lack of interpretability

3. Balancing weights
• Entropy Balancing, Covariate Balancing Propensity Score, etc.
• Optimization may be infeasible under weak overlap

Our idea

We propose the mixing framework, which helps overcome the limitations of the above
approaches by creating a synthetic sample of mixed treated and control units.
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Main idea: Simple mixing strategy

Our strategy aims to intentionally increase overlap by mixing treated and control units.

treated control

Original dataset

−→ treated control

Mixed dataset

• Target population

• Stronger overlap

• More stable estimation within
the mixed sample
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Main idea: Simple mixing strategy

1 Mixed distribution

Mixed PS, Mixed IPW and their properties

treated control

Original dataset

treated control

Mixed dataset

2 Mixing implementation

(i) M-estimation (ii) Resampling algorithm
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Notation & Setup

Under Rubin’s Potential Outcomes Framework, our aim is to apply mixing to weighting
estimators of the Average Treatment Effect on the Treated (ATT).

Assumptions

1. Unconfoundedness: (Y (1),Y (0)) ⊥⊥ Z | X
2. Overlap: 0 < e(x) = P(Z = 1 | X = x) < 1 for all x

• (Y (0),Y (1)): Potential (counterfactual) outcomes

• Y : Observed outcome

• X : Observed covariates

• Z : Binary treatment indicator

• τ = E [Y (1)− Y (0) | Z = 1]: Target estimand (ATT)

• fY ,X : Joint density of (Y ,X )

• fY ,X |Z=z : Joint density of (Y ,X ) given Z = z
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Mixed distribution

Definition (Mixed distribution)

We define the distribution of (Y ∗,Z ∗,X ∗) as the distribution with the conditional joint
densities of (Y ∗,X ∗) given Z ∗ = 1, 0, respectively,

fY ∗,X∗|Z∗=1 = (1− δ)fY ,X |Z=1 + δfY ,X |Z=0

fY ∗,X∗|Z∗=0 = fY ,X |Z=0

for a fixed constant 0 < δ < 1 and Z ∗ to satisfy P(Z ∗ = 1) = P(Z = 1) =: π. We refer to
the mixed distribution with a constant δ as the simple mixed distribution.
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Mixed distribution

treated control

Original distribution

−→ treated

δ

1− δ
control

Mixed distribution
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Mixed propensity score

Lemma 1 (Mixed propensity score and its robustness)

Let e∗(x) = P(Z ∗= 1 |X ∗= x) be the propensity score of the mixed distribution. Then,

e∗

1− e∗
(x) = (1− δ)

e

1− e
(x) + δ

π

1− π
for all x .

δ ↑ 1 δ ↓ 0

0 1
π = P(Z = 1) e∗(x) e(x)

Figure 1: Behavior of e∗(x) with respect to δ
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Mixed IPW (MIPW) estimator

Theorem 1 (MIPW estimator and its consistency)

Using the mixed propensity score

e

1− e
(x) =

e∗

1−e∗ (x)− δ π
1−π

1− δ
,

we define the Mixed IPW (MIPW) estimator as follows:

τ̂ :=

∑
i ZiYi∑
i Zi

−

∑
i

(
e∗

1−e∗ (X
∗
i )− δ π

1−π

)
(1− Z ∗

i )Y
∗
i∑

i

(
e∗

1−e∗ (X
∗
i )− δ π

1−π

)
(1− Z ∗

i )

Under the strong ignorability assumptions, τ̂ is a consistent estimator of τ .
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Mixing implementation 1: M-estimation

Proposition 1 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, θ̂ = Solveθ [
∑

i ψ
∗∗(θ;Yi ,Xi ,Zi ) = 0] is an

M-estimator of θ = (β, π,E [Y (1) | Z = 1],E [Y (0) | Z = 1]), where, for 0 < δ < 1,

ψ∗∗(θ;Y ,X ,Z ) =


{

1−δ
e∗(X ;β)Z +

(
δπ

(1−π)e∗(X ;β) −
1

1−e∗(X ;β)

)
(1− Z )

}
∇βe

∗(X ;β)

Z − π
ZY − ZE [Y (1) | Z = 1]

e(X ;β)
1−e(X ;β) (1− Z )Y − e(X ;β)

1−e(X ;β) (1− Z )E [Y (0) | Z = 1]

.

{(Yi ,Zi ,Xi ,Y
∗
i ,Z

∗
i ,X

∗
i )}

n
i=1

{(Yi ,Zi ,Xi )}ni=1

τ̂ τ
ψ∗

n → ∞

20 / 33



Mixing implementation 1: M-estimation

Proposition 2 (Asymptotic normality based on observed samples)

Under the strong ignorability assumptions, θ̂ = Solveθ [
∑

i ψ
∗∗(θ;Yi ,Xi ,Zi ) = 0] is an

M-estimator of θ = (β, π,E [Y (1) | Z = 1],E [Y (0) | Z = 1]), where, for 0 < δ < 1,

ψ∗∗(θ;Y ,X ,Z ) =


{

1−δ
e∗(X ;β)Z +

(
δπ

(1−π)e∗(X ;β) −
1

1−e∗(X ;β)

)
(1− Z )

}
∇βe

∗(X ;β)

Z − π
ZY − ZE [Y (1) | Z = 1]

e(X ;β)
1−e(X ;β) (1− Z )Y − e(X ;β)

1−e(X ;β) (1− Z )E [Y (0) | Z = 1]

.

{(Yi ,Zi ,Xi ,Y
∗
i ,Z

∗
i ,X

∗
i )}

n
i=1

{(Yi ,Zi ,Xi )}ni=1

τ̂ τ
ψ∗

ψ∗∗

n → ∞
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Mixing implementation 2: Resampling algorithm

Another way to implement mixing is to use a resampling algorithm that directly
estimates f̂ ∗Y ,X |Z=z from the observed dataset.

Observed dataset

{(Yi ,Zi ,Xi )}ni=1 ∼ f̂Y ,X |Z=z f̂ ∗Y ,X |Z=z

(
{(Y ∗

i ,Z
∗
i ,X

∗
i )}

n
i=1

)
m=1

...

Resample M times

...(
{(Y ∗

i ,Z
∗
i ,X

∗
i )}

n
i=1

)
m=M

τ̂
Aggregate
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Mixing implementation 2: Resampling algorithm

The resampling algorithm allows for extensions to various weighting schemes, such as
Entropy Balancing or Covariate Balancing Propensity Score.

Proposition 3 (Extension to balancing weights)

Suppose W ∗ is a balancing weight for X ∗, satisfying

E [X ∗ | Z ∗ = 1] = E [W ∗X ∗ | Z ∗ = 0].

Then,

W :=
W ∗ − δ π

1−π

1− δ

is a balancing weight for X .
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Simulation study

Simulation 1 Simulation 2

M-estimation

• IPW vs MIPW

• Efficiency gain in terms of both
finite- and large-sample
perspective

Resampling algorithm

• Extension to Entropy Balancing

• Performance under model
misspecification

• Data generating process: e(X ) = {1 + exp(−XTβ)}−1,X ∼ N5(0, I )
• Overlap level (according to β): Strong / Moderate / Weak
• Treatment effect: τ = 1 (homogeneous)
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Simulation study for implementation 1: M-estimation

• Performance measures: Monte-Carlo simulation of (1) standard deviation estimates
and (2) Huber-White’s robust standard error estimates

• Benchmark: ATO estimation via overlap weights (Li et al., 2018)
• ATO: A causal estimand under the subpopulation for which the average treatment

effect can be estimated with the smallest variance.

• True treatment effect: 1 (homogeneous) =⇒ ATO = ATT = 1

Estimator IPW MIPW OW

Target ATT ATT ATO
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Results: IPW vs MIPW vs OW

Figure 2: Monte Carlo simulation result: SD estimates (solid) and Huber-White robust SE estimates
(dotted) of IPW, MIPW, OW
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Simulation study for implementation 2: Resampling algorithm

• Scenario 1: The same weak overlap setting from previous study (true treatment
effect = 1)

• Scenario 2: A modified study from Kang & Schafer (2007) to endow model
misspecification but within weak overlap (true treatment effect = 210)

• Extension to Entropy Balancing (EB): Weighting method that estimates e
1−e (Xi )

by solving a constrained optimization problem to reduce model dependence
(Hainmueller, 2012).

Estimator EB MEB OW

Target ATT ATT ATO
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Results: EB vs MEB vs OW

Figure 3: Monte Carlo simulation result: SD estimates of EB, MEB, OW
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Results: EB vs MEB vs OW

Figure 4: Monte Carlo simulation result: Finite-sample bias of EB, MEB, OW
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Future Work

• Heterogeneous mixing strategy: What if we allow δ to vary according to the
values of covariates?

0 1π e(x1) e(x2)

Figure 5: Homogeneous (Simple) Mixing: shrink with same ratio

0 1π e(x1) e(x2)

Figure 6: Heterogeneous (Advanced) Mixing: (blue) shrink less (red) shrink more
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Future Work

• Primary results

Estimator Bias SD

IPW 0.1812 0.2656
Simple Mixing 0.1590 0.2440

Heterogeneous Mixing 0.1497 0.2232

Table 1: Advanced mixing strategy

• Other interesting topics remain, including application of mixing to matching
methods.
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Summary

Key Takeaways

Mixing: A simple & practical tool for handling weak overlap in causal estimation to
control extremeness of inverse probability weights without additional assumptions

• Performance: Efficiency is enhanced without bias trade-off
(even under sufficient overlap)

• Straightforward interpretation: No need to shift the target estimand

• Flexibility: Applicable to broad range of weighting methods

• Open to further exploration: Heterogeneous mixing strategy

Thank you!

Email: suehyunkim@snu.ac.kr
Preprint link: https://arxiv.org/abs/2411.10801v3
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